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. Foreword

— i
+

Everyone interested in mathematics education will find important
perspectives for consideration in Education in the 80%: Mathematics.
Whether the reader is more inclined to preserve the status quo or to call
for major curriculum changes, this book will help provide a focus for
some vita! questions and related issues that are facing us in‘the 80's.

Public perceptions are that the quality of education is slipping, and
school critics continue to peint to declining test scores. Whether or not
these test scores are true indicators of quality, teachers have felt 'pres-
sure to prevent further loss of public support. Some of the conservatism
reflected in the “back-to-basics” movement can be traced to. téachers”
. perceptions about public expectations of the schools. But has the
renewed attention to basic skills been an unqualified success? What do
formal assessments and informal surveys tell us about student achieve-
ment and attitudes? By adopting a narrow definition of basic skills, do
educators pay a price? What relative emphasis should be given to com-
putation, estimation, measurement, probletn solving, and data analysis?
If each of these basic areas is to be developed and allowed to flourish
in our programs, then some shifts in priorities must be considered by
educators and publishers. N

As we entered the 80's we also heard claims that our education
programs have not been keeping up with the country’s present and
future needs for trained personnel in technical and technological fields,
particularly in engineering and computer science. Projections of con-
tinued shortages of personnel throughout the decade have led some
commentators orl the international scene to worry that we are in danger
of losing our technological edge. Has lack of student motivation, or our
failure to require more mathematics and more science, contributed to
this situation? Why does the “critical filter” of course work in secondary
mathematics scfeen out so many more women than men from a signifi-
cant number of college majors and subsequent careers? How can the
schools intervene to encourage young adolescent women to pursue
mathematics in the upper grades of high school?




[

It appears certamn that caleulators and computers will become more

. and more prevalent on the job and in the home. Educators and employ-

ers are currently promoting computer literacy arr~ng our citizenry Will
the integration of computers into the curriculum improve student prob-
jem-solving skills? Can computers help teackers impiove student moti-
vation? Will the extensive use of calculators and computers retard com-
putational skill development? What types of computer applications in
the schools make the most sense? To what extent should calculators and
computers be regarded as objects of study in their own right? As a
matter of fact, many college professors and secondary school teachers
are n.ore concerned about students who lack proficiency in algebraic
manipulations than they are about students who enter college lacking
computer literacy. At the entering level, calculus continues to dominate
college mathematics, it also exerts the strongest influence on the |ast two
years of the high school curriculum. If students return to their high
schools reporting that they were well prepared for calculus, will teachers
and administrators risk changing a curriculum that appears to be appro-
priate for those students? How can the promotion of probabihty, statis-
tics, and computer science make a significant impression on curriculum
decisionmakers? What should the schools provide for those students
who are not planning to attend. college?

This compendium of questions represents some of the issues ad-
dressed in this book. Several articles provide in-depth discussions of one
major topic; others contain insights that tut across a number of separate
issues. The authors seek to inform the reader. They propose no simplis-
tic solutions. Veterans of curriculum campaigns in the 60’s and 70's
know that the words “crisis” or “revolution” do not motivate many
people to seriously reconsider curriculum, teaching methods, or aids to
teaching. In contrast to the post-Sputnik days of more robust support
systems for teachers a1.d €zhools, it js difficult today for mathematics
teachers to maintain contact with researchers, innovators, and sources
of inspiration in the field. Education in the 80's: Mathematics is one valuable
way for educators to keep abreast of the work of authors who are truly
concerned with the future of mathematics education.

Joseph F. Aieta

Mathemmatics Teacher
Weston High School
Massachusetts




Introduction

"The decade of the eighties promises to be a period of excitement
and ferment in schocl mathematics. There is a growing 1<cognition
among the public and among employers of the expanding need for
mathematical skill and expertise, and of the importance of general
mathematical and computer literacy to the consumer.and citizen.

Support for the perceived importance of mathematics to individu-
als and to society includes recent Gallup polls (at 97 percent, mathemat-
ics ranked highest among subjects deemed essential for all high school
students) and a major report. Sence and Engineering Education for the 1980’
and Bevond, prepared by the National Science Foundation and the De-
partment of Education at the request of President Carter.

But the increasing awareness of growing societal demand for math- <
ematical knowledge and skill is coupled with the widely held perception
that our mathematics education is falling short. However valid this
perception may or may not be, a number of recent reports coming after
a publicized decade-and-a-half decline in SAT scores have stirred up
cries of “crisis.” These reports have described the intensive and exten-
sive mathematics study in the schools of countries such as the Soviet
Union, East Germany., and Japan. The comparisons are primarily quan-
titative—our students spend a considerably smaller proportion of their
schooling in mathematical study—but there is some evidence of
qualitative differences. Content descriptions indicate that the primary
and middle school student in the Soviet Union, for example, has a muck
broader exposure to mathematical topics than the student in the United
States, where elementary mathematics instruction concentrates heavily
on anthmetic.

The picture is extraordinarily complex; nonetheless we find a pre-
dictable reaction: the perce,ved state of affairs jn school mathematics is
linked to national concerns for productivity and humanpower needs
and technological dominance, and the inference is that “there is a crisis.”

Shades of Sputnik! At this point the reader may have a feeling of
déja vu, but as James Fey points out in his article in Part I of this book,
the conditions are vastly different from those in 1957. The schools are
in a financially difficult position, public support for education in general
and for teachers in par,ticular is not what it should be, and. in an era of
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budget cutting, the federal government is most unlikely to pick up the
tab for crash programs to bolster mathematics and science education
Nevertheless, there are factors and trends that will certainly dictate
major changes in mathematics teaching and curricula One of these is
the revolutionary effect on society of technological advances, in particu-
lar the computer. Electronic marvels, whether the pocket calculator for
routine calculations on the job or for everyday living, or high-powered
computers which change the very nature of handiing inforaation and
sulving problems, are our civilization’s dominant tools Educational ob-
jechives must comprehend the uses and influences of these devices, as
J D. Gawronski discusses in Part 111, Despite the lingering worries of
many parents and some teachers that calculators will make computa-
tional cripples of our students, the schools cannot ignore the fact that
most complex compulation in real-life settings is performed by using
calculators. In another article in Part JIl, Sherilyn Seitz and Terry E.
Parks describe activities from their direct 2xperience in which classroom
use of calculators reinforces but does not replace the learning of compu-
tational skills.

A realistic appraisal of the role of calculators in everyday life and
in classroom problem solving will bring into foc'is the necessity for

sincreasing instructional emphasis on skills of estimation Several of tie
authors in this book make this point, and in their article Robert E. Reys
and Barbara J. Bestgen discuss research support and suggestions for
teaching the skill of computational estimation.

Another trend that may have peaked but that still dominates public
pressure on schools is the “back-to-basics” movement. Mathematics
teachers finally scem to be getting the point across that the "basic” or
“essential” in mathematics goes well beyond a mastery of computation.
Several categories of skill or knowledge are basic in mathematics. And
changes in technology make some former basics obsolete. Skills are
tools. They are basic only as long as the times demand them.

Part 11 describes several arcas that should be considered basic in
mathetnatics study. Marilyn N. Suydam discusses the role of computa-
tion today and tomorrow, in a historical context. Gwen Shufelt shows
Jhe development of measurement concepts from early intuitive activi-
ties to more sophisticated applications jn high school. As previously
mentioned. the Reys and Bestgen article presents the case for estimation
skill as essential to all students.

In this day and age, it is difficult to imagine a mere important
consumer skill than the ability to understand information Presented
statistically. Today's citizen needs to know how to find dq,la:ﬁ organize
data, to present data in a clear and sometimes graphic’manner, and to




draw correct inferences from data. In short, informal statistics is a basic
skill as Albert 1. Shuite proposes in his article.

In her article on computation, Marilyn N. Suydam provides evi-
dence that problem solving has always been the stated goal of school
mathematics, while skills are the means to this end. Evidence accymu-
lates, however, o show that school mathematics has not been fully
meeting this goal and that emphasis has shifted to the means, away from
theend. Recently, there has been arenewed interest in giving attention to
the application of mathematics to the solution of problems. Support is
strong for instruction in those skills and higher-order cognitive processes
that are brought to bear on problem solving. Mary Grace Kantowski
“discusses what mustbe the ultimate ” basic”"—proble=1 solving.

Another apparent trend is the criticism or ot least questioning of the
adequacy of present high school requirements in mathematics. Re-
cently, surveys, reports, and conferences (e.g., the Priorities in School
Mathematics project. the PRIME-80 conference of the Mathematical
Associntion of America, the National Science Foundation-Department
of Education report, Serence and Engineering Education for the 1980 s and Beyond)
provide evidence that for a growing number of people and groups, the
typical one-year requirement in grades 9 to 12 appears insufficient for
a future which promises increasing uses of mathematics in everyone’s
life. Are students of high school age making informed choices about
mathematics electives?

Sociologist Lucy Sells has used the term “critical filter” to define the
role of mathematics in providing options in further education and ca-
reers. This 1dea is central to an awareness of the injustice represented
by the glaring underrepresentation of minorities and women jn math-
ematics-user positions and careers and jn advanced mathematics study.
Mary Schat: Koehler and Elizabeth Fennema in Part IV ask, “ls there
a problem concerning female participation in mathematics?” and then
explore the factors basic to the underrepresentation of fernales in math-
ematical pursuits.

The last article in the book discusses the suggestion that more
mathematics be required in high school for all students. it makes the
point that if this happens, the program will need to be diversified to
meet 4 wide variety of needs, interests, and ability levels.

Finally, change in math ematics ¢ducation may be hastened by the
accumulation during the past five or six years of information about
mathematics instruction and its outcomes. In the first article, James T.
Fey gives an account of several important studies carried omt between
1975 and 1979, which he uses to present the status of mathematics
education and its future prospects.

1
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One report which has already had considerable influence is the
presentation of the results of the second assessment i+ mathematics of
the National Assessment of Educational Progress. The secend article,
written by a team funded by NSF to interpre! the data—Thomas P.
Carpenter, Mary Kay Corbitt, Henry S. Kepner, Jr., Mary Montgomery
Lindquist, and Robert E. Reys—summarizes the implications of these
results.

Two docuﬁmcnts referred to jn several articles shouid be mentioned
here. In 1979 and 1980, the National Council of Teachers of Mathemat-
ics conducted an extensive survey of the priorities and preferences for
mathematics instruction of several populations, both professional and
lay. Funded by the National Science Foundation and entitled Priorifies in
School Mathematics, the study is widely known as the PRISM report, It
provides an interesting view of the important similarities and ditfer-
ences in various groups’ priorities. It also provides an important part of
the data base for the second document, published in 1980 by the Na-
tional Council of Teachers of Mathematics. This document, An Agenda
Jor Action, Recommendations for Sch -ol Mathematics of the 1980, is the organiza-
tion’s agenda to deal with needed change and future directions for
mathematics programs.

It may be instructive and interesting to_-onsider the merits of these
recommendations against the backdrop of ideas and issues presented by
the authors of this book. Accordingly, a summary of the «.ght major
categories of the Council’s recommendations f~llows.

The National Council of Teachers of Mathematics recommends
that—

1. Problenr solving be the focus of school mathematics in the
1980's.

2. Basic skills in mathematics be defined to encompass more than
computational facility.

3. Mathematics programs take full advantage of the power of cal-
culators and computers at alt grade levels.

4. Stringent standards of both effectiveness and efficiency be ap-
plied to the teaching of mathematics.

5. The success of mathematics programs and studént learning be
evaluated by a wider range of measures than conventional test-
ing. )

6. More mathematics study be required for all students and a flexi-

ble curriculum with a greater range of options be desighed to
accommodate the diverse needs of the student population.

13
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7. Mathematics teachers demand of themselves and their col-
leagues a high level of professionalism.

8, Public support for mathematics instruction be rajsed to a level
commensurate with the importance of mathematical under-
. sianding to individuals and society.

Shirley Hill




Status and Prospects
James T. Fey

For those who study the history of U.S. education, the status of
school mathematics today must bear striking resemblarce to the critical
period just 25 years ago. In 1956, disappointment with the mathematical
preparation of entering college students led to the formation of a Col-
lege Board Commission on Matheraatics. The challenge of scientific
competition with the Soviet Union, sparked by the 1957 Sputnik crisis,
led to urgent calls for strengthened and modernized school mathematics
curricuia. At the same time, U.S. schools faced a ciitical shortage of
qualified mathematics teachkers, and those already in schools needed
‘extensive reeducation in content and pedagogy.

Today the chalienges in school mathematics are remarkably similar.
Reports of student achievement at all levels seern consistently dis-
couraging; sovietologists have recently reported dramatic prcgress in
the mathematics education achieved by that country; electronic tech-
nology promises to bring fundamental changes to curricula and teaching
methods; and again there is a critical national shortage of qualified
mathematics teachers. In 1980 the Secretary of Education and the Direc-
tor of tle National Science Foundation (NSF) submitted a report to
President Carter highlighting these and other problems and calling for
major government action in science education.

If one i5 inclined to reason by historical analogy: the task of plan-
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ning school mathematics for the 1980°s offers an attractive opportunity.
It seems appropriate to ask: Which responses to the earlier crisic
worked? Which failed? How are conditions today different from those
of the fate 50’s, and what impact witl these different conditions have on
cfforts to bring about positive change? Fortunately, in mathematics
education, there are several recent surveys and reflective analyses that
provide ihe kind of background understanding needed for thoughtful
planning.

In 1974 the Conference Board of the Mathematical Sciences orga-
nized a National Advisory Committee on Mathematics Education
{(NACOME) to prepare an Overview and Analysis of School Mathematics K~12.
One of the first tasks of that committee was to survey the efforts and
accomplishments of the “new math’ era. The crisis in school mathemat-
ics of the late 1950s led to dozens of major curriculum development
projects, thousands of institutes and conferences for teachers, major
rescarch and evaluation projects, and lively controversy about the wis-
dom of various reform efforts. For the fitst time in history the federal
government played a major role in guidance and fnancial support of
educational development, and school mathematics became a national
political issue.

As NACOME pointed out, from 1955 to 1970 reform efforts in
school mathematics were intended to produce high-quality curricula for
college-capable students. The innovative programs were designed with
major advice from university and industrial mathematicians and psy-
chologists. The central themes included emphasis or student under-
standing of mathematical methods, use of unifying concepts and struc-
tures, increased precision of language and reasoning, acceleration of
many traditional topics or courses, introduction of new topics {(notably
calculus and statistics), and deletion of outdated material. The course
content and sequence changes were accompanied by recommendations
favoring laboratory and discovery instruction.

Beginning about 1970 a new set of background conditions and
. prassures led school mathematics development in different directions.
Attention shifted to programs for less able students, minimal compe-
tence for job entry, applications of mathematics, and school account-
ability through extensive achievement testing. From focus-on advanced
topics for college-bound students, energy and attention shifted to basic
- skills appropriate for all students. The new diredtion i curriculum
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gained a catch-phrase label, “back to basics,” and an accompanying
instructional theory of behavioral objectives and individually pre-
scribed learning programs.

Like its predecessors in the educational limelight, the basic skills
thrust was prompted by disaprointing student achievement reports and
subsequent public concern. The concern led to curriculum advisory
conferences and development projects. Changes in school texts were
soon noticed, and these changes provoked coniroversy about proper
minimal competence goals and methods of assessing achievement. This
pattern of evolving change follows that of the new math era a decade
carlier. However, the back-to-basics movement reveals effects of differ-
ent change agents. Professional mathematicians played little role in
stimulating or guiding the initiatives. The specific characteristics of
back-to-basics programs seem more responsive to the demands of a
concerned public and of some classroom teachers.

NET EFFECTS OF REFORM—SCHOOL MATHEMATICS
TODAY

As_mathematics educators have debated the value of successive
innovations——new math, discovery teaching, behavioral objectives, in-
dividualized instruction, .basic skills programs—perceptive observers
have frequently questioned the extent to which any of these proposed
.nnovations became part of daily practice in normal school classrooms.
As the 1975 National Advisory Committee commented, “Serious gaps
in the avaijlable information prevent definitive resolution of many ques-
tions.” {2, p. xiv). That committee worked hard to assemble bits and
pieces of pertinent information and to indicate the kinds of data needed.
Since its report the National Assessment of Educaticnal Progress
{NAEP) has released two studies of school mathematics achievement;
the National Science Foundation has published two extensive surveys
of curricula, teaching, and teacher characteristics; and the National
Council of Teachers of Mathematics has completed an extensive survey
of Priorities in School Mathematics. A synthesis of these findings gives valu-
able empirical evidence on the effects of recent change efforts, the status
of school mathematics today, and the prospects for future change.

Curricula in Use

After assessing the curricular lmtlatwes of the new math era, the
NACOME report concluded that “From a 1975 perspective the principal
thrust of change in school mathematics remains fundamentally sound,
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though actual nnpact has beenl nodest relative to expectations ” (2, p
21). The Commuttee further conjectured that by 1975 a back-to-basics
mood had begun to influence curricular decisions at al! grade levels
The NACOME conclusions about curriculum practice were based
on study of textbouks, published syllabi, a National Center of Eduda-
tion Statistics survey of course offerings and enrollments, and informal
sreports from leaders in the field. The 1977-78 NSF surveys gave more
extensive data on these same indicators, but left open for conjecture the
actual substance of courses delivered to students For example. elemen-
tary texts usually contain material on geometry and statistics, but many
experts in the field suspect that this material is routinely skipped in
favor of emphasis on arithmetic computation. At the secondary level
algebra texts contain material on trigonometry and probability. but this
content is aJso frequently omitted in favor of further practice with
algebraic manipulations. Time and time again these conjectures were
confirned n reports to NSF case study observers with comments such
as the following from elementary teachers:

Modern malthematics? | dislike it. . . . [The text] shows three ways
when one will do. The brass tacks are learning addition and sub-
traction. That's it.

"

This book has too much esoteric garbage in it. It is simply too hard,

The geometry is sitly [to try and teach] even for our best third
graders. So we all skip it.

We are fortunate not to have gone way out for the new math. We
have stuck to the basics throughout it all and the results that are
coming show we were right. (6, pp. 31-33}

Secondary teachers applauded these trends in elementary mathem iwics.
. These sentiments therefore confirm NACOME conjectures that new
math erachanges have had only modest impact on the content of school
mathematics and suggest an obvious explanation—the insiovators failed
to win the minds and hearts of classroom teachers.

Teaching and Teachers

Over the past 25 years teachers in grades K-12 have recejved
recommendations for change in teaching methods that nearly equal the
scope of curriculum proposals. But. despite urging to use discovery,
laboratory activities, -individualized programs, computers, and other
promising approaches. the weight of evidence suggests that school
‘mathematics teaching today follows a‘limited traditional pattern: first,
answers to the previous day’s homework are given, with representative
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problems worked by the teacher or an able student, then, teacher-
directed explanibon ind queshonmg are used to present material for
the next day’s assignment, finally, studerts begin work on the assign-
men€ at their seats. One observer in the NSE studies noted that “Al-
thongh it seemed burning to me, students and teachers seemed comforta-
ble with it. Apparently it fulfills student expectations and provides the
students opportunity for closare.” (6, p. 6). The teachers supported their
choice of teaching methods with comments lik- he following:

We've found that traditional snethods of instruction work. This is
the way it was taught to usin high school and the way it was taught
in college and the way it works for us. . . . | don’t think kids can
handle inquiry. (6, p. 11) ‘ '

The classroom practices of teachers undoubtedly reflect their
knowledge and beliefs about mathematics and how students learn. The
N3F surveys indicate that, as of 1977, secondery mathematics teachers
averaged 12 years of experience. half held a degree beyond the bache-
lor's degree, and about 40 percent were taking a course for college credit.
A majority of mathematics classes were taught by men and by teachers
for whom mathematics was their only subject area of responsibility. An
overwhelming number of those teachers felt adequately qualified to
carry out their teaching assignments.

When teachers in grades 7-12 were asked to specify areas in which
they would like assistance. they mentioned learning new teaching
methods, information on instructional materials, implementing dis-
covery/inquiry methods, using manipulatives, working with small
groups, and articulation across grade levels. At most, however, 42 per-
cent of the teachers mentioned any one of these areas. When asked to
rate the seriousness of various potential problems, these same teachers
consistently stressed lack of materials for individualizing instruction,
lack of student interest in the subject, inadequate student reading abili-
ties, and too-large class size. Eighty percent rcported low student inter-
est to be a problem and 90 percent reported madequate reading abilities
to be a problem. ,

At the clementary Jevel also, the average teacher has over 12 years
of experience. In all likelihyod the mathematical competence of these
teachers is much greater than that of teachers of 20 years ago, and, for
the,most part, the teachers feel competent to do agood job in mathemat-
ics. However, state supervisors of mathematics saw lack of teacher
interest in mathematics and inadequate preparation to teach mathemat-
ics as the most serious problems in grades K-6. This contrast suggests
that K-6 teachers and their immediate supervisors believe in the com-




putalifon curriculum and in "\tcll-and-d ill” methods of instruction—a
pattern of beliefs that will not'please many mathematics educators. and
one that constitutes a formidable barmrier to change (7).

These survey data give a sketchy quantitative outline of mathemat -
ics teachers’ backgrounds and concems, but they only begin to tell the
story, of teachers’ attitudes and beliefs that emerges from consistent
findings of case study interviews. With near-perfect regularity, teachers
at al! grade levels support the trend toward traditional content, instruc-
tional methods, and higher standards of student performance. They
bgliévc that mastery of certain skills is an essential prereqguisite for
concept learning and creativity. While frustrated by inability to moti-
vate students with genuine applications, most teachers find virtue in
mathematics as an arena for teaching logical thought, problem solving,
and careful hard work. Like teachers in every subject area, mathematics
teachers talk of going stale, of losing enthusiasm for their task. This
feeling is sometimes expressed in negative feelings toward students
(they don’t care or try, they're spoiled); toward school administrators,
college and university training programs, and the community.

Despite the frequent complaints, the overall mood that filters out
of the NSF status surveys is well captured by the following summary:

They saw themselves in a serious, not very exciting business; the
business of education. They saw themselves as pfetty good busi-
nessmen. wishing that times would change for the better, but confi-
‘ dent that they could deliver on their promises and pretty well
satisfied that the{e is not really a better way to run the shop. (6, p. 25)

‘ This picture of mathematics teachers today. combined with the earlier
profiles of curriculum and instruction in mathematics. shows the reali-
ties with which any attempted change in mathematics education must
deal.

Students and Their Achievement

Changes in curriculum content or teaching methods will prompt
vigorous controversy among mathematicians and classroom teachers of
mathematics: but the only certain cause of public debate concerning
school mathematics is a report of student achievement test scores. For |
the past ten years this news seems to have been all bad. College aptitude ‘
test scores have declined steadily. failure rates on minimal competence
tests have been distréssingly high, and student performance at most
grade levels has declined in relation to national norms of earlier periods.
All these data add up to a pervasive public impression that school
achievement is far below what it reasonably ought to be.

—— s
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The actual profile of student achievement results is not so consist-
ent as impressions suggest, nor are the explanations for declines in
several areas simple. For instance, when NACOME studied available

-._mathematics test data in 1975, the committee noted that declining per-

forma nce was concentrated at the secondary grade levels, that perform-
ance on basic computational skills was not so disappointing as on more
complex problem-solving tasks, and that there was little convincing
evidence that new math curricula were major contributors to changing
patierns of achievement. The recently reported second national assess-
ment of mathematics revealed similar patterns—computational skills
with whole numbers and decimals seemed satisfactory, but problem-
solving performance was poor.

Several prestigious committees, each se¢.ching for causes of the
trends, have analyzed the declining levels of performance on college
entrance examinations. Each report has concluded that the causes are
complex and interrelated. Since the declines in mathematics perform-
ance have been consistently less than those in verbal tests, one could
reasonably argue that mathematics teaching has resisted a general de-
cline in acaderric achievement.

When classrqom teachers are asked to conjecture causes of deﬁl n-
ing student achievement, they place poor student motivation at the top
of the list. While there is clear evidence that student attitudes toward
mathematics decline throughout secondary school, it is not so clear that
the situation is much different now from what it was in the past. Others
suggest that fewer students are taking advanced mathematics in high
school and that graduation or college entrince requirements in mathe-
matics have been reduced over the past 10 years. Again, the evidence
in favor of this explanation is not clear. The NSF surveys found 56
percent of all school districts requiring one mathematics course at most
for high school graduation and this course could be something like
general mathematics. Enrollment figures suggest. however, that most
students are really taking much more mathematics.

At the elementary grades it is very clear that schools spend consid-
erable time on mathematics. second only to language arts and far ahead
of any other subject area. This probably represents a significant change
from the period 20 years ago and may well account for the generally
solid performance in grade school mathematics.

Social Context of Schooling

. When specialists in mathematics education seek ways to improve
curricula, teaching, and student achievement, they tend to look within
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the discipline of mathematics and the mathematics classroom for jdeas
But trends such as teacher burnout or declining student achievement
and motivation are not limited to school mathematics They suggest that
the effectiveness of any one special instructional program is affected by
a complex of broad school and societal factors.

The new math era prompted by the Sputaik crisis of 1957 was
sustained by broad public support. Governments invested large sums of
money in curriculum development and teacher education; teacher sala-
ries gained relative to other occupations: new and well-equipped
schools were built at a rapid rate; parents encouraged their childrea to
study as much mathematics as possible and to work hard in preparation
for college entrance. When one looks at the societal suppoit system for
schools in general, and for mathematics education in particular, condi-
tions today are distressingly different.

Education is no longer a growth industry: student populations are
declining and resource allocations are tightly constrained, Schools have
been asked to play leading roles in social integration, with the result that
many teachers report chaotic school conditions not conducive to serious
study. Instability in family life has also contributed to declining home
interest in and support for schools. .

The recent National Council of Teachers of Mathematics survey of
Prioritres in School Mathematics (PRISM) revealed that the public still places
high value on mathematics education {5). However, the public view of
curricular emphases tends to be very conservative and thus at odds with
the priorities of leaders in the Reld.

PROSPECTS FOR THE 80'S

Nearly every survey of the past 25 years in mathematics education
leads to the same simple conclusion: great ambitions, modest accom-
plishment. As we mentioned at the outset of fhis article, the field faces
chalienges today no less critical than those of that earlier period. Cur-
ricula and teaching methods must be totally reConstructed to take ac-
count and advantage of the new microelectronic wosld in which current
and future students will iu.re. The resources to carry out such fundamen-

tal reconstruction of school mathematics are not abundant, and the
record of efforts during the new math and back-to-basics eras suggests
that implementing change will not be easy. Despite the complaints of
some that schools “"experiment too much,” the facts show that educa-
tion is a very conservative institution. In the search for reasons why
many teachers seem to have lost their enthusiasm and spirit of innova-
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tion, it has been suggested that a teacher’s position is really very iso-
lated. As the sole adult in a class of young people it is often difficult for
teachers to maintain contact with the scientific and professional com.
munities beyond the school. Some teachers have “kept a window on the
larger world of ideas,” but “most teachers have only a mirror that
reflects the values and ideas already dominant in the public schools” (6,
p. 18).

There are sharp differences between the priorities of the public,
classroom teachers, administrators, and innovators in mathematics edu-
cation. Furthermore, those in the classroom tend to dismiss outside
opinion as impractical and out-of -touch, those outside tend to criticize
teachers for stubbornly resisting any new ideas. This climate of distrust
and criticism that bars coope:ative work on important problems is a
tragedy for mathematics educanon. Redevelopment of working rela-
tions among the various parties with interest in school mathematics
must be high on the priority list of the profession. .

The National Council of Teachers of Mathematics has set an
Agenda for Action for the decade ahead. Perhaps with the insight of
recent experiences and the combined energy of the many professionals
who care about the health of school mathematics, it will be possible to
look back at the end of the decade to a period of striking accomplish-
.nent.

L
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An Inferpretation of the Results
of the Second NAEP Mathematics Assessment™

Thomas P. Carpenler. Mary Kay Corbitt, Henry 5. Kepner, fr.,
Mary Monlgomery Lindguist, and Roberl E. Reys

Many questions are asked about student achievement and attitudes
in mathematics. One of the primary sources that may be used to answer
. 3 such questions is the mathematics assessment of the National Assess-
ment of Educational Progress (NAEP). The results of the second mathe-
matics assessment, conducted during 1977 and 1978, provide insight
' into what our students are and are not learning and also into their
attitudes toward mathematics.

This article presents an interpretation of these results in the form
of selected conclusions. In order to place the conclusions into perspec-
tive, it is important to understand the purposes of the assessment, the
nature of the sample, and certain aspects of the assessment procedures.

One purpose of the assessment was to make available comprehen-
sive data on educational attainments of young Americans. Thus, the
exercises covered a wide range of objectives selected by panels of math-
ematicians. mathematics educators, classroom teachers, and lay people.
Another purpose was to measure change. Some exercises were therefore
designed to reflect changes in future curricula. For example, some deci-
mal exetcises were administered to 9-year-olds so that baseline data

*This article is based upon work supported by the National Science Foundation under
Grant No. SED-7920086, Any opinions, findings, conclusions, or recommendations ex-
pressed here are those of the authors and do not necessarily reflect the views of the
National Science Foundation. ’
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would be available for comparisons at a later date. In other words, it wvas
not expected that 9-year.olds would do well on decimal exercises. but
that there would be a change on future assessments.

The sample; consisting of more than seventy thousand 9-, 13-, and
17-year-olds, was carefully selected to be representative of many facets
of our population. The results provide an accurate sampling of .S,
clementary and secondary students rather than of special populations
such as college-bound seniors. For example, the 17-year-old population
consisted of students in the tenth to twelfth grades, about one-half of
whom had had at least a half-year of general or business mathematics.
about two-thirds of whom had had at least a half-year of algebra, but
only about one-sixth of whom had had trigonometry.

Altogether, approximately 230 exercises were administered to 9-
year-olds, 350 to 13-year-olds, and 450 to 17-year-olds. Since testing
time was limited to 45 minutes for each participant, an item-sampling
procedure was used to administer each exercnse to appronmately 2,400
respondents at cach age level.

All exercises were administered by specially trained exercise “ad-
ministrators to groups of fewer than 25 students. To standardize proce-
dures and to minimize reading difficulty, all exercises were presented on
a paced audiotape as well as in exercise booklets. Both multiple choice
and open-ended exercises were included. Scoring guides were devel-
‘oped for the open-ended exercises in order to identify the percentage
of respondents making specific errors.

We have selected six conclusions as our interpretation of some of
the results; other authors may reach other conclusions. These six con-
clusions, Rowever, are generally supported by a wide range of exercises,
not merely the illustrative exercises reported here.

“S1X CONCLUSIONS

1. Students demonstrated a high level of mastery of addition. sub-
traction, and multiplication of whole numbers. -

A great amount of instructional time is devoted to the skill of
computing with whole numbers. The results of this assessment showed
that this emphasis does produce students who can add, subtract, and
muitiply whole numbers.

The 9-year-olds had mastered the basic addition and subtraction
factssuchas 8 + 5or13 — 6, and the two older age groups had pastered
a)l the basic number facts. About two-thirds of the 9-year-olds could
perform simple addition and subtraction computation involving re-
grouping. For example, 1bout 75 percent of them gave the correct re-
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sponseto 37 + 18. By age 13, almost alf students could perform simple
computations involving addition, subtraction, or multiplication. Most
older students were successful with more difficult calculations such as
* those given in Table 1.

TABLE 1 . .
AppiTioN, SusTRaction, anp MuLtirLicaTioN ComruTaTiON
Exercise Percent CoRrrect -
Age 13 Age 17
4285 ‘
3273 )
+ 5125 85 o0
Subtract 237 from 504 T 73 i 84
671 .
*x 402 66 72

The conclusions that follow indicate that the strength shown in
these computations was not found in all other number areas. Perform-
ance was also lower on exercises assessing basic noncomputational
skills. For example, only 4 percent of the 13-year-olds and 18 percent
of the 17-year-olds found the area of a right triangle. In general, the
only noncomputational skills for which students demonstrated a high
level of mastery were those involving simple intuitive concepts or those
skills they were likely to have encountered and practiced outside school.
For example, 85 percent of the 13-year-olds could tellitime and 81
percent of the 9-year-olds could read a bathroom scale. *

While the results cf the exercises involving addition, subtraction,
or multiplication are positive, they must be considered in the light of
the other results. If the amount of time spent on these skills prohibits
the development of other basic skills, then it is necessary to examine not
only priorities, but aiso the ways in which and the times at which these
skills are developed. . .

*

2, Students experienced difficulty with division of whole numbers.

Both 13- and 17-year-olds had difficulty with division computa- - |

tion. Only about half of the students in these two age groups made the
following calculation correctly:

]
28)3052.
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About 30 percent of the 13-year-olds and 15 percent of the 17-
year-olds missed even simple division exercises. With a calculator,
however, over 80 percent of the 13- year-olds and over 90 percent of the
17-year-olds could do the more difficult division exercises. This raises
some serious guestions as to the productivity of time and effort spent
dnlting on division and whether that tin: and (ffort should be devoted
to other topics. Clearly, the current approach te teaching division is not
effective for most students. ‘

The division algorithm, as well as most of the other algorithms
taught in school, is designed to produce rapid, accurate calculation
procedures. Given the widespread availability of hang calculators, it
would seem that the continued emphasis on developing facility with
computation algorithms should not be as high a priority as it was for-
merly. Certainly computation is important; but what is needed are
algorithms that students will remember and will be able to generalize
to new situations. '

3. Students showed. a lack of understanding of fractions, decimals,
and percentages. ‘

Students’ performance showed a lack of understanding of basic
concepts and processes associated with fractions, decimals, and percent -
ages. This conclusion is drawn from examining computation, estima-
tion, and word problems.

The results in Table 2 indicate that most students could add simple
fractions with common denominators. However, when adding fractions
with unlike denominators many used superficial manipulations. For
example;-30 percent of the 13-ycar-olds and 15 percent of the 17-year-
olds added the numerators and denominators to arrive at ¥ for the sum
of V2 and ¥5. Notice that the complexity of the unlike denominators had
relahvely little effect on the students’ performance. It appears that if
students have Ifarned and can recall an algorithm, they can successfully
apply it. However. if they have not learned or cannot recall a mecharical
algorithm, they cannot solve even simple problems that might be solved
intuitively or by using simple models of fractions.

Contrast the results of the last exercise in Table 2 with the exer-
cise in Table 3. This estimation exercise and the errors vividly point
out the lack of understanding of fractions. More students could, cor-
rectly compute the sum of fractions than could choose an estimate of
the sum.

Further evidence of the lack of understanding is found when a
fraction computation exercise is contrasted with a verbal problem.
Given a simple verbal problem requiring fraction mulktiplication for its
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TABLE 2

FracTioNn Apprmion EXERCISES -
Exgrctse - - Percent Correcy
: Age 13 Age 17
¢ 4 3 _ =
Y™ 74 90
23/5
+ 4 4/5 63 77
1,1 _
A gt3=. . 33 56
kY
' 2
. 15
4
+ 9 - -39 54
TABLE 3
’ Perrormance oN A FracTion EsTiMaTiON FXERCISE
ESTIMATE the answer to 12 +2 You will not have time to
i3 8 ’

solve the problem using paper and pencil.

Percent ResPoNDING

Age 13 Age 17
<o 1 ? 8
- 2 24 a7
L B 34 28 21
OO 2 27 15
€ 1don’t know R 18

- solution, fewer than one-third of the 13- and 17-year-olds gave the
correct response: despite the fact that approximately three-fourths of
both groups could correctly multiply the fractions involved. These re-
sults indicate that students had no clear conception of the meaning of
fraction multiplication, and therefore could not apply their skills to
solve a simple problem.

If students have mastered basic decimal concepts , then operations

-»
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with decimals are essentially the same as those with whole numbers.
About half of the 13-year-olds and two-thirds of the 17-year-olds were
successful on exercises assessing basic decimal concepts, and about the
same number of students could also add, subtraci, and multiply deci-
mals. Performance on division exercises was much lower, however; the
lack of understanding of both decimals and division could explain this
level of performance.
. Successful performance with percentages requires a firm founda-
tion of fractions and decimals. Not surprisingly. then, performance on
perce ntage exercises was extremely low. Table 4 gives illustrative exer-
cises and results.

TABLE 4
OperATIONS WITH PERCENTAGES

Pzzcent Correct

Age 13, ' Age 17
A. 30 is what percent of 607 35 58
B. What is 4% of 75?7 8 27
C. 1215 15% of what number? 4 12
D. What is 125% of 40? 12 31
E. 6 is what percent of 1207 6 16

The importance of understanding ma)'f, in part, account for the
difference in the level of performance between operations involving
whole numbers and operations involving fractions, decimals, and per-
centages, Most assessment exercises indicated that students had learned
the basic concepts underlying whole number computation, and had
some notion of the place value concepts involved in the computation
algorithms. As a conscquence, performance on whole number computa-
tion exercises was. in our opinion, generally good. The results also
suggested, however. that most students did not have a cJear understand-
ing of fractions, decimals, and percentages, and appeared to operate at
a mechanical level. This jack of understanding resulted in relatively
poor performance.

The same lack of understanding was alsc observed in other con-
_ tent areas such as measurement and probability, as well as in problem
solving. Students percelved that understanding is an integral part of
mathematics learning, as evidenced by the fact that 90 percent of the
older age groups agreed with the statement, “"Knowing why an answer
is correct is as important as getting the correct answer.” Their re-
sponses may reflect either their actual belief, or the fact that they had
heard the statement and they considered agreement with it the “right"
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response. This second alternative gains credence when compared with
the fact that about 90 percent of the two older age groups agreed that
“There is always a rul2 to follow in solving mathematics problems
The stydents may be concentrating on mastering rules to the extent of
ignoring concomitant understanding, because their experience dictates
that right answers, usually obtained by means of rules, are rewarded.

4. Students were successful on one-siep routine verbal problems,
but showed a lack of basic problem-solving skills.

One of the consequences of leamming mathematical skills at a rote,
mechanical level is that students cannot apply the skills they have
learned to solve problems. In general, NAEP results showed that the
majority of students at all age levels had difficulty with any nonroutine
problem that reguired some analysis or thinking. It appears that stu-
dents have not *~arned basic problem-solving skiils.

Problem solving is often equated with solving textbook verbal
problems, but these were not the type of problems that caused diffi-
culty. In fact, students generally were successful in solving routine
one-step verbal problems such as those found in typicil textbooks.
Results suggested that if students understood the operation involved in
routine one-step verbal problems. finding the solution presented no

difficulty. For example, 38 percent of the 9-year-olds and 82 percent of
the 13-year-olds correctly solved a problem similar to the following:

Sue had 342 stamps in her collection. If 278 of them were U.S.
stamps. how many were foreign stamps?

For the corresponding computation problerﬁa (342 — 278), 50 percent of
the 9-year-olds and 85 percent of the 13-year-olds calculated the correct
ANSWer.

Although students could solve most simple one-step problems.
they had a great deal of difficulty analyzing nonroutine or multistép
problems. In fact, for a problem that required several steps or that
contained extraneous information, students frequently attempted to
apply a single operation to the numbers given,

Even whgn students could identify the appropriate operataon to use
to solve a problem, they frequently had difficulty relating the results of
their calculation to the given problem in nonroutine situations. For
example, the following baseball problem was administered to 13-year-
olds:

A man has 1310 baseballs to pack in boxes which hold 24 baseballs
each. How many baseballs will bc left over after he has filled as
many boxes as he can?
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Twenty -nine percent recognized that the remander (14) of the division
calculation was the correct response, but 22 percent gave the quotient
(51) as their answer This error occurred because the problem required
students to do more than routinely identify an appropriate operation
and perform the calculation. Apparently problem-solving involves only
these two steps for too many students.

When faced with problems that contained extraneous data (sce
Table 5), students often attempted to incorporate all the numbers given
in the problem into finding their solution. Other results showed that
students did not draw pictures to help themselves understand problems
{see Table 6), nor were they able to apply their knowledge of related
problems to solve a given problem.

The assessment results indicate that the primary area of concern
should not be with simple one-step verbal problems, but with nonrou-
tine problems that require more than a simple application of a single
arithmetic operation Dart of the cause of studentdifficulty-Wwithnon= -
routine problems may be found in our overemphasis on one-step, prob-
lems that can be solved by simply adding, subtracting, multiplying. or
dividing Instruction that reinforces this simplistic approach to problem

. solving may contribute to student difficulty in solving unfamiliarprob- |

lems. Although it may be argued that children must learn to solve
simple one-step problems before they can have any hope of solving
more copmplex problems, an overemphasis on one-step problems may
teach children only how to routinely solve such problems. It may also
teach them that they do not have to think about problems or analyze
thea in any detail.

Students need to learn how to analyze problem sitiiations through
instruction that encourages them to think about the preblems and helps
them develop good problem-solving strategies. There is no magic for-
mula for making students into good problem solvers. It is clear that they
need ample opportunity to engage in problem-solving activity. It is

therefore important that problem solving not be regarded as secondary
to learning certain basic computational skills so that students will have
such opportunity.

L
5. Students mastered computational skills after the time of primary
emphasis in the curriculum.

It is important to recognize that most computational skills are
learned over an extended period of time. Assessment results suggest
that most skills are mastered after their period of primary emphasis in
the curriculum. For exainple; even though a goal of most mathematics




TABLE 5 )
A ProsLEm wiTi ExtranEous DATA

One rabbit eats 2 pounds of food each week. There are 52 weeks in a
__year. How much will 5 rabbits eat in one week?
- ST "7 " PERCENT RESPONDING ™

e m am e kg

Age 9 Age 13
o 2 pounds 2 2
4®» 10 pounds a7 56
< 52 pounds 16 s
< 104 pounds 16 11
¢ 520 pounds 12 -~ i 23
> [ don't know : 6 3
TABLE 6
DisTANCE PROBLEMS WITH AND WITHOUT A PICTURE
10 ft.
SO USSR 1.4 S

What is the distance all the way around this rectangle?
Percent Resronping

Age 9 Age 13
<> 16 feat a9 12
< 30 feet q 1
4» 32 feet 40 60
> 36 feet . 4 4
S 60 feet 4 13
Mr. Jones put a wire fence all the way around his rectangular garden.
The garden is 10 feet Iong and 6 feet wide. How many feet of fencing .
did he use?
Percent Responping |
Age 9 Age 12
. <> 16 feet 59 s a8
<> 30 feet 6 3
&% 32 feet 9 a1
O 36 feet s 5
O 60 feet 15 21
3 5




- T g A A oty Y ity m PP R it e e o o S
T e s e e A g,

programs is that students learn subtraction facts by age 9, there was
significant improvement in performance on subtraction fact exercises
from age 9 to age 13 (from 79 percent to 93 percent), and there was also
some improvement between ages 13 and 17. Similarly, students’ ability
to handle fraction_computation_increased from age 13 to age 17 (see
Table 2). :

' Although problem solving and other content areas clearly require
an increased emphasis in the curriculum, we do not deny the impor-
tance of computational skills. A reasonable level of computational
skiils is required for problem solving. We are suggesting, however,

" that problem solving not be deferred until computational gkills are
mastered. Problem solving and the learning of more advanced skills
reinforce the Iearmng of compul.tional skills and provide meaning for
their application. -

These results also have profound implications for minimum
competency programs. They suggest that rigid minimum_competency
programs that hold children back until. they have demonstrated
mastery of a given set of skills may, in fact, be depriving them of the
very experiences that would lead to mastery of “the partlcular
skills. ",

- - == —-Educators cannot-be complacent, howevcr, -and assume that skills
will naturally develop as students mature. Specific provisions must be
made to practice and reinforce the development of critical skills. The
skills that continue to develop--addition,” subtraction, and multiplica-
tion of whole numbers—are skills used in a variety of contixts, so that
students continue to have experiences with them in the curricu-
lum.

Although some skills will continue to develop through use in other
contexts, this is not always the case. The current high school curriculum
does not take into account the fact that some students do not have many
well-developed basic skills by the time they begin instruction in algebra
and geometry. For example, very few 13- or 17-year-olds have mastered
percentage concepts or skills; outside of genetal mathematics, however,
there is very little opportunity for high school students to extend or
maintain their knowledge of percentages.

Not only is it necessary to provide these opportunities in high
school, but it is also necessary to ensure that students continue to take
mathematics throughout their high school-program. The assessment”
background data indicate that currently this is not happening. The
majority of 17-year-olds take only two years of high-school-level
mathematics. This situation becomes more pronounced jn the case of
minority students.

33




=l

AP et e ot

6. Sludents percéived themselves-as competent,.motivated, and en-

joying.mathematics and rated it as an important and useful sub]ecf“' Bl

The attitude exercises asked students to rate their perceptions of
mathematics in a variety of ways. For example, students were asked fo
indicate how much they liked or disliked several subjects. In ail age
groups;, physical education was the best-liked subject. For the 9-year-
olds, mathematics was the second favorite subject (of 65 percent). While
the 13- and 17-year-olds liked other subjects better than mathematics,
69 percent and 5% percent of these two groups. respectively. liked math:
ematics.

The seif-concept stafements showed that a majority of all age
groups felt that they were falrly good mathematics students. Fifty-five
percent of the 9-year-olds felt that they were good at working with
numbers, and an additional 40 percent thought that they were some-

‘times good at the task. Sixty-five percent and 54 percent of the 13- and

17-year-olds, respectively, felt that they were good at mathematics, and
about the same percentage responded that they enjoyed mathematics.

Over 75 percent of the 13- and 17-year-olds and 66 percent'of the
9-year-olds felt that mathematics was useful in helping solve everyday
problems. Further, about 80 percent of the older respondents thought
that most mathematics had some practical use. Most students felt that
some knowledge of mathematics was useful in getting a job. Around 90
percent of the older respondents rated mathematics as an important

subject. —— s e

Students perceive mathematics as lmportant, but as stated in the
previous conclusion, the number of students continuing their mathe-
matics declines greatly throughout the four years of high school. Al-
though there are many reasons for this situation, two that deserve

* consideration come from students’ perceptions of mathematics. First, in

comparing mathematics to other subjects, more 13-year-olds rated
mathematics easy than any other subject. By age 17, students rated
mathematics hard more often than any other subject. It is necessary to

_ examine why students’ perception of the level of difficulty changes.

Second. it is necessary to consider the role in which students see them- -
selves in.mathematics classrooms. The NAEP resuits showed that stu-
dents perceived their role to be primarily passive—they are to sit, listen,
and watch the teacher do mathematics, and then they are to work
individualiy on problems from texts or worksheets. They feel they have
litte opportunity to interact with classmates about the mathematics
they study or to explore mathematics. Not only may this role be dis-
couraging to students, but it also may interfere with their learning. If
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active student involvement in the learning process is a desired goal of
mathematics instruction, then changes in approaches to learning mathe-
matics are necessary to foster and encourage that involvement. *

-

CONCLUSION

2

Although many of the foregoing six conclusions have rather bleak
overtones, the sixth conclusion should give us hope. Students do view
mathematics positively; they see the need for it, and, contrary to some
opinions, they enjoy it. During the eighties, we need to begin with the
premise that our students can do better and to hold high expectations
for them, as we carefully examine the ways in which we can assist them _
in reaching these goals.
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THREE

Computation: Yesferday, Today, and Tomorrow
Marilyn N. Suydam

Why should computation be taught?
What computation should be taught?
When should computation be taught?
How should computation be taught?

Most teachers and parents are concerned with these questions; in
fact, they have been concerned in the past and probably will continue
to be concerned for some time. This article will consider some answers
to these questions within the framework from which they arise—the

- way in which computation was viewed yesterday, js viewed today. and
may be viewed tomorrow.

YESTERDAY: THE GOOD OLD DAYS

. Until almost 1900, to be “'great in figures”” was to be learned. The
) mark of an educated person was the ability to compute. Most children’
stayed in school for only four or six or eight years {the time increasing
as the century went on), learning little more mathemaiics than com-
putation with addition, subtraction, multiplication, and division of
whole numbers, and maybe a bit about fractions. They needed no
more for their futures in farming, carpentry, susveying, shopkeeping—
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or homemaking. Thus computation became synonomous w:th mathe-
matics.

Throughout the twentieth century, too, even though the number
of years of schooling increased and the number of career options ex-
panded, the curriculum remained focused on computation. Computa-
tion was taught

chiefly for its usefulness in daily life, but also because of the train-
. ing that it gives the mind. (15, p. 84)
In the early 1900’s, drill was the primary instructional mode: first, the
teacher demonstrated a computaticnal procedure to children, then fol- .
lowed it with repeated drill until the children committed the procedure
to memory. This technique “trained the mind.” Some drill was in the .
form of word problems because

Computation is not an end in itself, but a means to an end. . ..

Ability to compute is of no value unless we know what process to _ :

apply to a problem. (17, p. 13)

When the difficulties of learning purely by drill had (onte again)
overwhelmed teachers as well as parents {not to mention pupils), in
order to promote the benefits of meaningful instruction {once again), the
ultimate purpose was repeated:

The four fundamental operations are not ends in themselves
but only a means to an end; the end is problem solving. (6, p.
346)

Thus, computation and problem solving have been linked for many
years.

5 Within the past decade, advocates of a curriculum focused on basic
skills or minimum competencies have been instrumental in moving the
elementary school mathematics program toward an emphasis on drill in
computation. In promoting a return to the good old days, some may
have overlooked not only the purpose of teaching computation, but
muich of reality as well.

TODAY: FACING REALITY

v

It has been said that the “modern mathematics” movement of the
1960's had an adverse effect on the learning of computational skills. Yet
scores from many state and national assessment test$ indicate that chil-
dren are learning to compute—at least with whole numbers, according
to reports from the National Assessment of Educational Progress. On
both the first mathematics assessment in 1972-73 and the second assess-

<
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ment in 1977-78, performance on computation with whole numbers
was generally high (2, 9). Fewer students, however, were successful
with fractions, decimals, and percentages. (Also see Conclusions T and
3 in the preceding article, “An Interpretation of the Results of the
Second NAEP Assessment.”)

In a comparison of item data from a number of assessments,
Bright's analysis indicated that— .

1. Computational performance improves across grade levels. Com-
i putational skills are not acquired at the time of initial instruc-
tion; instead, mstmctlon over several years is needed to reach
stability, the pomt at which 80 percent to 90.percent attain
mastery.
2. Levels of performance decrease as the items become more com-
plex.
3. Performance tends to stabilize during the junior high school
. years.

4. Performance for whole-number computation stabilizes earlier
and at a higher level than for fractional number computation. (1)

Bright concluded that
It is important to note that the data presented refute the notion that
students generally do not acquire basic computation skills. In fact,
some skills {e.g., addition and subtraction without regrouping) are
almost universally acquired, whereas others {e. Ber division of deci-
mal fractions) are not. Any meaningful discussion of the perform-
ance of students in basic computational skills must be-a discus-

sion of specific skills rather than skills in general. (I, p.

160)

Far greater difficulty was evident on word problems than on com-
putation. {See also conclusion 4 in the preceding article.) Between the
first and second NAEP assessments, problem-solving performance gen-
erally declined at all three age levels tested. In 1978, 28 percent of the

- . 9-year-olds solved a simple word problem requiring multiplication and
46 percent solved a simple division problem, compared with 46 percent
and 59 percent, respectively, in 1973. The conclusion of the NAEP
summary: .

People seem to feel that facility with lower-level processes should

automatically transfer into an ability to solve problems, and this is

not necessarily the case. (10, p. 7)

The summary noted two points in particular:

¢
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1. ftudents did, not seem able to think througi problems.

. Often, more students could do computations correctly than
could solve word problems using the same numbers.

Several recent studies (7, 16, 20, 23) have provided evidence that
over the past 25 years elementary school mathematics programs have
continued to concentrate on teachlng children to compute. Despite .
variety of content displayed in some textbooks and curnculum AP
during this period, ~ther topics

are most often skipped in favor of more time to develop computa-
tional skills that are comfortable to and valued by elementary
teachers. (7, p. 11) ,

With the current emphasis on “the basics” and minimal compe-
tencies, there has been a partial return to the drill procedures common
prior to 1940. Certainly recently published textbooks contain far more
drill-and-practice pages than they did for some years. Certainly teach-
ers are concerned by the pressures of accountability for student mas-
tery of computational skills. Unfortunately, many teachers and par-
ents do not realize that it was lack of success with rote drill programs
that led directly to the proposed use of more meaningful approaches.
“In spite of massive effort devoted to drill, 100 percent mastery proved
impossible to attain, even for drill’s strongest proponents. Research
indicates that meaningful instruction has a far better payoff in terms
of retention and transfer (22). Memonzatnon and drill, however, offer
a payoff in immediate learning that seems enticing; moreover, drill is
simpler for a teacher to administer than is mearningful instruction (for
instance, using manipulative materials to develop meaning js patticu-
larly difficult for some teachers to manage).

So enticing is the promise of drill that only 14 percent of the
teachers queried in a recent survey thought that mastery of basic skills
should come after the development of concepts (3). Concern that a
long-term problem jn mathematics instruction is being worsened has
led to such warnings as the following:

Conceptual thought in mathematics must build on a base of fac-
tual knowledge and skills. But traditional school instruction far
overemphasized the facts and skills and far too frequently tried to
teach them by methods stressing rote memory and drill. These
methods contribute nothing to a confused child’s understanding,
retention, or ability to apply specific mathematical knowledge.
Furthermore, such instruction has a stultifying effect on student
interest in mathematics. in school, and in learning itself. (7, p. 24)




Thus the needed balance belween meaningful instruction and drill-and-
practice procedures has not yet been realized.

Facing reality also means facing the widespread application of cal-
culators and computers. Now in use in a vast array of occupations, these
tools will be used by today’s students throughout their lives. In one
study, supervisors in large retail firms rated competency in their use the
most important skill they wanted in hiring employees (5).

Eighty-two percent of those queried by the Priorities in School
Mathematics Project (PRISM) indicated, however, that calculators,
should not be used until after studerits have learned both the meaning
of whole number operations and paper-and-pencil procedures for them
(13}. Despite evidence that children can learn computational skills by
using calculators (19}, many parents and teachers do not yet accept their
use. L -

In response to another item on the PRISM survey, over 90 percent
supported the ides that paper-and-pencil computational skills should
be acquired before graduation from high school. Concemn for other
mathematical ideas was rarely so strong. Support was very strong for
~one other topic, however: problem solving. It was consistently ranked
high in priority for increased emphasis in the 1980’s (12, p. 29). It seems
apparent, then, that the beliefs about computation—carried over from
the good old days”—and about problem solving—a thread still run-
ning through today’s reality—must be reconciled and merged with the
calculaticnal technology that will continue tomorrow.

TOMORROW: THE POSSIBLE DREAM

Two recommendations in the NCTM's Agenda for Action intertwine
the roles of computational skilis and problem solving and the use of
technology:

1. The concept of basic skills must encompass more than computa-
tional facility.

2. Mathematics proéra ms must take full advantage of the power of
calculators and computers at all grade levels.

The rationale for such a stance notes that

It is dangerous to assume that skills from one era will suffice for
another. Skills are tools. Their importance rests in the needs of the
times. Skills once considered essential become obsolete, and this is
likely to increase in pace and scope as advances in technology
revolutionize our individual, social, and economic live; Necessary
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new skills arise . . . Time and space for including these new skills

in the curnculum must be purchased by ehmmatmg the obsolete.

{12, p. 6) -+ -

The Agenda clearly recognizes that attammg some ievel of profi-
ciency in computation w1thout the use of calculators is neces.ary. but

Common sense shoulcl dictate a reasonable balar{cézamong mental

facility with simple basic computations, paper<and-per il al-

gorithms for simple problems done easily and rapidly, and the use

of a calculator for more complex problems or those where problem

analysis is the goal and cumbersome calculat.ng is a limiting dis-
* traction. (12, p. 6}

Furthermore, ]

. . even if improvement in rote comp {anon takes.place,.a-citizen -
who cannot analyze real-life situationg to the point of recognizing
what computations must be made to solve real-life problems has
not entered the mainstream of functipnal citizenship. (12, p. 6)

Periodically. it is necessary to make 3 careful reexamination of the
content of the mathematics curriculumfand the way in which that
content i® being taught. It is also neces
tions r:  od at the beginning of this article jn an attempt to shape the
curticulum for tomorrow.

Why should computation be taught

Computation js a tool for solving problems in real-life situations.
Thus, many persons feel that “compuytational skills are absolutely cru-
cial” On the PRISM survey. 90 percent of the teachers, supervisors,
mathematics educators, principals, s¢hool board members. and parents
queried gave this reason for placing computation high on the list of
priorities for curriculum development in the 1980°s. But fewer than 2
percent felt that its importance 1§/1ncreasmg
~ As noted earlier, tradition plays a large pdrt in shaping the curricu-
. lum. “What 1 learned in school is what my children should learn* is the
" basis for many arguments about why computationa! skills should con-
‘tinue to be taught. One fgctor related to this concern js that computa-
tional skill is viewed as # requirement for further mathematical study.
Essentially, computation js a hurdle v,hich students must overcome or
they will be excluded from a wide range of options and occupatnons
which require more advanced mathematics.

Those who would decrease the centrality of computation jn the
curriculum have responded to the foregoing reasons. They point out

——— e —=n "
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that computation is not used as frequently as are estimation, measure-
ment, and other skills; they argue that, in a world in which machines
can compute more accurately than people can, people should be learning
to do what machines cannot do (at least yet}—think. They point out
that the technological ravolution is having an impact at jeast as great as
that of the industrial revolution in the last century. Children must learn
how to direct machines to solve mathematical problems, rather than
spend extensive effort learning how to perform the calculations tnat
machines can do so much more quickly and accurately than humans
can. ‘¢

Many persons feel that computational skills cannot be properly®
learned without the use of paper-and-pencil procedures. Few would
eliminate such procedures, although some would advocate giving them
fess emphasis and ¢liminating those no longer needed. —— -

What computation should be taught?

Several years ago, the National Council of Suparvisors of Mathe-
matics, concerned like many >thers because “computation” «.1d “basic
skills” were being equated. developed a list of ten basic mathematical
skills (11). This list, endorsed by tihhe NTTM and other educational
groups, specifies the following as basic: problem solving; applying
mathematics to everyday situations; alertness to the reasonableness of
results; estimation and approximation; appropriate computational
skills; geometry; measurement: reading, interpreting, and construciing
tabies, charts, and graphs; using mathematics to predict; and computer
literacy. This paper places computational skills in a broader perspective:

Students should gain facility with addition, subtraction, multi-
plication, and division with whole numbers and decimals. Today it
must be recognized that long, complicated computations will usu-
ally be done with a calcui+?sr. Knowledge of single-digit number
facts is essential and mental arithmetic is a valuable skill. More-
over, there are everyday situations which demand recognition of,
and simple computation with, common fractions. {11, p. 2)

Further explication of what constitutes a desirable ievel of compu-
tational skill for students to attain today in order to be prepared for
tomorrow has come from several sources (4, 21, 12}:

1. Undesstanding the processes of addition, subtraction, multi-
plication, and division with whole numbers, fractions, decimals,
and integers.

2. Memorizing the 390 addition, subtraction, multiplication, and
division basic facts to the point of immediate, unaided recall.
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3. Doing standard computational algorithms for addition, subtrac-
tion, muttiplication, and division with whole numbers with un-
derstanding and at a moderate rate of speed, with fluency at
some relatively simple computations with two to three digits
(that is, up to the point where it is faster to use the head than
to rely on calculators). A comparable criterion should apply to
computations with fra&ions decimals, and integers.

. Developing skills in estimating. rounding. mentat computatlon
and judging an answer’s reasenableness.

S, Selecting and using computational skills in solving problems.

As Hamrick and McKillip point out, the goal should not be to turn
“the student into a calculator, albeit a slow and inaccurate one”™ (4, p.
2). What is-needed is-a-student who can compute without a calculator
whenit is more convenient to do so and, most important of all, a student
who can apply computational skills in the ultimate test of solving prob-
lems. I short, students should have the computational skills they really
need for tomorrow—along with other mathematical skﬂ]s of vital im- .
portance. N

w

When should computation be taught?
Answers to this question depend, of course, ot what is to be taught.
Not only should content be considered, but also the developmental

needs of the child. Two worthwhile resources for exploring “when' are
Payne (14) and Suydam (18).

How shovld computation be taught?

This question has been: approached throughout this article. The
importance of meaningful instruction, the need to place drill into its
proper perspective. and the role of calculators and computers all require
contitued consideration.

CONCLUSION: TENETS FOR TODAY AND TOMORROW

To assist teachers in thinking about teaching computation today—
and tomorrow—the following tenets are offered for consideration, It is
also recommended that teachers read the entire article from which they
are excerpted (21). The article discusses each tenet in detail and gives
examples that are directly applicable to teaching.

1. Computational skill is one of the important, primary goals of
a school mathematics program.




2. All children need proficiency in recatling basic number facts, in
using standard algorithms with reasonable speed and accuracy,
and in estimating results and performing mental calculations,
as well as an understanding of computational procedurés.

3. Computation should be recognized as just one element of a
comprehensive mathematics program. .

4, The study of computauon should promote broad, long-range
= -=—poslsof learning— — — T e e e

5. Computatish needs to be continually related to the concepts of
the operations, and both concepts and skills should be devel-
oped in the context of real-world applications.-

6. Instruction in computational skills needs to be meaningful to
the learner.

7. Drill-and-practice plays an 1mportant role in the mastery of
computational skills, but strong reliancz on drill-and-practice
alone is not-an effective approach to learning.

8. The nature of learning computational processes and skills re-
quires purposeful, systematic, and sensitive instruction.

9. -Computational skills nezd to be analyzed carefully in terms of
effective sequencing of the work and difficulties posed by diff -
erent types of examples.

10. Certain practices in teaching computation need thoughtful
reexaminaticn.

[

. o

REFERENCES M

" 1. Bright, George W. " Assessing the Development of Computation Skills.” In Deloping
Computatonal Shills, edited by M, N, Suydam. 1978 Yearbook. Reston, Va: National Coun-
cil of Teachers of Mathematics, 1978.

2. Carpenter, Thomas; Coburn, Terrence G.; Reys. Robert E; and Wilson, james W,
Resulls from the Brst Mathematus Assessment of Educaironal Progress. Reston, Va. National Council
of Teachers of Mathematics, 1973,

3. Denmark, Tom, and Kepner, Henry §., Jr. “Basic 5! ills in Mathematics: A Survey.”
Journal for Researck in Mathemat'ss Educotion 11 (March 1980): 104-123.

4, Hamrick, Katherine B., and McKillip, William D “How Computational Skills Con-
tribute to the Meaningful Learning of Arithmetic.” In Deoeloping Compulational Skills, edited
by M. N. Suydam. 1978 Yearbook. Reston, Va. National Coungil of Teachers of Mathe-
matics, 1978,

5. Mcanelly, James R. ”A Study of the Mathematical Competencies Considered lmpor-
tant by Supervisors in Large Retail Firms in the Metropolitan Area of Chicago.” Doctoral
dissertation, Morthern Wllinois University, 1978. Dissertation Abstracts International 39A: 3314~
15; Dzcember 1978,




PAFulToxt Provided by ERIC

Wil |

6 Morton, Robert Lee Teacking Anthmetn 1n the Elementary School, Ncw York. Silver Burdett,
1937, .

7 National Advisors Committee on Mathematical Education, Quervreie and Analyss of
School Mathematies, Grades K-12 Washingion, D.C . NACOME, Conference Board of the
Mathematical Sciences, 1975.

8 National Assessment of Educational Progress. Changes in Mathematial Achtevement. 1973~
78. Report no. 09-0MA-01. Denver: NAEP. August 1979,

9 Niathemahial Knowlede and Shil Report No. 09-MA-02. Denver. NAEP, August
1979
10. . Mathemaireal Aekievement {Summary). Denver, NAEP, 1979,

11 National Caounal of Supervisors of Mathematics. “NCSM Position Paper on Basic
Mathematical Skills ** Jamuary 1977 ED 139 654, (Also 0 Arsthmetse Teacher {October 1977)
and Mathemabies Teacher {February 1978).)

12 National Council of Teachers of Mathematics. Ar Agenda for Adtion. Recommendanons for
School Mathematics of the 19805, Reston. Va.: The Council. 1980.

13 . Priorities sn School Mathmatics. Evecutive Summary of the PRISM ha;rd Reston, Va..
The-Counc-:I,—‘l?e: e

14 Payne, Joseph N, ed Mathomaties Learsung 1n Early Childhood Thiny-sevenlh Yearbuok.
Reston, Va. National Council of Teachers of Mathematics, 1975, °

15. Smith, David Eugene. The Teacking of Anthmenr. Boston: Ginn, 1909,

16. Stake, Robert E, and Easley. jack. Case Shedies of Saenee Education. Final Report, National
Science Foundation Contract No. C 7621134, Urbana, lI.. University of Illinois, 1978, ED
156 498-513.

17 Slone, John C. Tk Teackang of Arithmefie New York. ?eniamin H.Sanborn and Co., 1918,

18. Suydam, Marilyn N., ed Developing Compulational Shlls. 1978 Yearbook. Reston, Va..
National Council of Teachers of Mathematics, 1978,

19 Suydam, Marilyn N Lsng Calewlators 1 Pre-College Educabion. Third AnsualStite-of-the-Art
Review. Columbus, Chio: Calculator Information Center. Avgust 1980,

20 , and Osbor e, Alan R The Status of Pre-College Saence, Mithematies, and Social Stunce
Education, }955-1275 Volume B Mathemahes Education Final Repott, National Science Foun-
dation Grant No. NSF-C76-20627. Columbus, Ohio: ERIC Clearinghouse for Science,
Mathematics, and Environmental Education, 1977, ED 153 878,

21 Trafton, Paul R, and Suydam, Marilyn N. “Computational Skills. A Point of View.”
Avilhmetic Teacher 22 (November 1975): 528-37.

22 Weaver, ] Fred, and Suydam, Marilyn N. Meannglul Instruction tn Mathematses Education,
Columbus, Ohic, ERIC Clearinghouse for Science, Mathematics, and Environmental Edu-
cation, March 1972, ED 068 329,

23 Wolss, Iris Repurtof the 1927 Natonal Survey of Seence. Mathematies. and Soaal Studies Fducation.
Final Report, National Science Foundation Grant No. C76-19548, Research Triangle Park,
N. C.: Research Triangle Institute, 1978, ED 152 565,




Measurement Is Basic
Guwen Shufelt- - e

*

There is little question about the significance of measurement as
basic to the realization of a career in such areas as medicine, engineering,
computing, or applied sciences. Measurement is such an integral part of
everyone’s daily experience, however, that it is often overlooked as a
basic skill in mathematics education. It would be difficult.to imagine a
day without some measurement reference. At the most trivial-level,
questions of this nature are posed: Have [ gained or lost weight? Is it
cold enough to wear a sweater? Do | have time to finish this task before
my favorite television program? _ _

Even these simple applications involve reading appropriate mea-
surement units on the bathroom scale and the thermometer and com-
puting lapsed time on the clock. All assume familiarity with units
appropriate to the property being measured—weight, temperature,
time. . .
. Estimations of length, area, and space, with or without reference to
standard units, are another basic part of daily experience. Can | ge_t'niy
car into that parking space? s that rug the right size for my room? If
1 buy this new cabinet will it fit the space { have?

At a slightly higher level of application, such daily activities as
cooking, sewing, home improvemient projects, or a garden plan involve
more precise uses of measurement. Thus, basic to minimal functioning

*
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in everyday activities is competency with both the instruments and
units related to obtaining commonty used measurements. ,

"DEVELOPMENT OF MEASUREMENT CONCEPTS

In the primary grades, the concept of measurement as a comparison
should at first be developed without reference to particular units. Direct
comparison of two objects that have the property under consideration

-~ should be made. Is one child taller than another? Compare by having
children stand side by side {or back to back). Is the orange heavier than
the apple? Compare by using hands to "feel” weight or by using a
balance to “see” which one is heavier.

Later the measurement of objects that cannot be brought together
for comparison can be achieved by the use of an intermediary, movable
object that has the property to be measured. For example, to compare
the width of my.desk at school with the width of my desk at home, 1
car: use my new pencil. One desk is about four pencils wide. The other
is about five pencils wide. Not only do I know which is wider, 1 develop
ibe measurement concept of repeating a unit, my pencil, to assign a
number to a continuous property such as the width of a desk.

Teachers should be aware of the conceptual difficulties inherent in
the use of number in a measurement context as different from cardinal
(or even ordinal} uses relative to discrete objects. Perhaps because of
early socialization and instruction a child’s concept of number seems to
be biased toward number associated with discrete objects or even used
in a nominal sense rather than number assigned to a continuous prop-
erty. Children often learn to count and to identify number associated
with the house or apartment ”"where 1 live” even before coming to
school. Perhaps there is a readiness in terms of Piagetian conservation
that must be realized, but there may also be the factor of lack of experi-
ences with number in a measurement sense.

From the beginning, the development of a child’s concept of mea-
surement should emphasize measurement as an approximation. Words
such as "about four pencils” long or "'to the nearest unit” should be a
part of the basic vocabulary of measurement. Furthermore, emphasis
should be given to the convenience of sutbdividing units to obtain
smaller units for measuring smaller objects or creating larger units (mul-
tiples of a basic unit) to measure larger objects. Moreover, the ability
to select an appropriate unit, both in terms of size and characteristics,
must be developed as a component of basic measurement skills.

In the middle grades, the need for standard units may be motivated

1
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out ©of the limitations of nonstandard units. My hand and your hand
may not be the same size. Which hand should be ysed to measure the
table? If we are to communicate our measurements, units that are both
standard and universal must be leamned. )

Thus, early instruction in measurement should inclide activities
using both nonstandard and standard units. The purpose of the unit
should be emphasized. It must have the property being measured and
be appropriate in size. The process of measurement then is developed
as a repetition of the ynit until a "best fit"’ is achieved and the approxi-
mate number of units for a particular measurement is obtained. If a child
really comprehends this process, then the leaming of a particular stan-
dard system of ¥neasurement merely involves familiarization with the

. units of the system chosen. .

Traditionally, at the secondary level, the teaching of measurement
has been delegated to the science department. It has been taught
predominantly in an application setting with scant attention to the -
mathematical subtleties invelved in the concepts of precision, greatest
possible error, and absolute error.

These topics are entirely appropriate for a mathematical treatment
as applications of rounding and intervals. If measurement topics could
be developed cooperatively between mathematics and science depart-
ments, students would benefit from studying the mathematical theory
of measurement indepehdent of any system of standardized ynitsin the
mathematics class: Then the science laboratory would provide the ap-
plications with a specific system of units—the metric system.

Measurement as an approximation proirides an appropriate setting
for the introduction or clarification of the concept of a real'number as
a nested interval on the line. Linear measurement associates a real num-
‘ber.with the length of a segment relative to a unit on a number line.
Greatest possible error provides an interval within which lies the num-
ber that is the length. of the segment. Furthermore, the concept of
precision can be made explicit with reference to the size of the unit used.
These topics are appropriate for consideration in the secondary mathe-
matics class. ' i

——

‘THE METRIC SYSTEM

Unfortunately, today children in this country are caught in the
changeover from the traditional system, based on English units, to the
international metric system. Too many of the adult population, outside
the scientific and industrial sectors, seem to be clinging tenaciously to
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the cumbersome yards, feet, inches, pounds of th\Engllsh system in
spite of federal legislation intended to move the country toward umver-
sal use of the metric svstem. , I
Both systems appear on many standardized tests. Both aremc!uded
in the majority of elementary text series So it seems that children will

continue to be instructed in both for some time to come. This situation -

should not pose a problem to the elementary teacher if there is strict
adherence to a policy of eliminating any formal conversion from one
system to another. Rather, the emphasis should be on familiarization
with the units of each system independently. This familiarization
should come to students through the actual use of measuring devices
graduated in the units of the system. Measurement is one basic skl that
can best be learned through activities and experience using the appro-
priate units.and tools. It cannot be learned solely as a textbook subject.
This applies to the learning of both traditional and metric units.

In the early grades, as soon as the need for standard units has be=n
demonstrated, students should be introduced to the basic linear, weight,
" and capacity units for the metric system. At this stage the meter, deci-
meter, and centimeter should be used to measure lengths ynti] a child
is familiar encugh with the units to use them to estimate lengths. Gram
and kilogram weights should be used to balance familiar objects on a
balance scale to obtain the same familiarity. At this stage, relationships
between units in the system should only be develuped out of counting
how many centimeters in a meter, not by analysis of prefixes (e.g., cénti-
means 0.01 meter). That activity should be delayed until students have
developed base ten concepts associated with multiplication and division
by powers of ten.

If English units are to be introduced (and children will probably
continue to.encounter their use at home for some time), they should be .
intreduced in much the same way as suggested for metric units. Chil-
dren should use the units in actual measuring activities. They should
" learn the relationships between units from observing and counting on
aruler oron a scale. -

Threugh uppe elemen ary grades and inte middle school grades,
students should extend their knowledge of metric (and English) units
to all units that they will néed in everyday activities. These should
include kilometer and millimeter in addition to the linear units previ-
ously taught. Liter and milliliter as.capacity units should also be taught.

By middle school age, most stidents should be ready for a more
formal treatment of prefixes in the metrig system as related to the basic
unit in each measurement area. Tﬁey should master at least the follow-
ing common prefixes and basic units: :

@
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Prefixes: milli-,.centi-, deci-, and kilo-.

Basic, Linifs: the meter as the unit of length; the gram as the unit of
mass; the liter as the unit of capacity; the Celsius degree as the unit
of temperature; and of course tlme units. -

With this background jn ele\mentary and middle school, high
school students who ‘pursue academic programs in mathematics and
science should be much better prepared to be successful jn the more
abstract formulations of measurement they will encounter. At this level
complete formalization should be achieved, and the entire instructional
emphasis should be on mastery of all metric system units. The metric
system as the language of science should be the only system treated in
high schoot courses. The old practice of spending time in science courses
converting from metric to English and English to metric units should be
abandoned completely. Modern high school students should live in a
metric world. )
Even those students who will not continue with additional formal
~._  study after high school should be provided with enough continuing
~.instruction in metric measurement to enable them to be competitive for
|3b Many technical and business occupations will soon be totally

metnc “This includes such changes as the use of metric tools by mechan-

ics, packagiﬁ and bottling in metric units, and many other changes.

GENERALIZATIONS AND | FORMULAS \

Measurcment of area aru:l valume should be introduced ﬁrst as
"covering” and“’filling” with appropnate units, square unjts for area
and cubic units for volume. Students should cdnstruct these units from
. . famthar linear units and should oblam area and volume measurements
by “filling” and counting. Such experiments should precede.dls'covery
of the generalizations that lead to formulas. By
For example, given centimeter-squared paper a child should ﬁrst\
cover a rectangular region with squares and then count the number of
sqquares to find the area. Then the fact that the length gives the number
of squares in a row and the width gives the number of squares in a
column leads the student to a shortcut (formula) for ﬁndmg the | area
A =1 X w (see Figure 1), ‘
Similarly, by first counting sonares and then relatmg th
gion enclosed by a parallelogram to a rectangular region with equal
area, students can develop the formula for the area enclosed by a par-
.allelogram (see Figure 2). Also, two congruent triangular regions may
be joined to form a parallelogram and the area of the triangle shown
to be one-half the region enclosed by the parallelogram (Figure 3).
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The development of formulas for measurement of area in this man-
ner helps give meaning to them. It also avoids the confusion of area and
perimaier that often occurs when the formulas are introduced without
experiments to make the;n understandable.

Even the area of a a;cu!ar region tan first be explored by covering
it with.squares, counting and estimafing the area. Approximations for
pi can be obtained by méasunng the radius, squaring and dividing into
the estimated area. Careful experimenting with several circles of differ-
ent diameters can lead fo the dnscpvery of pi as the constant ratio of
circumference to diameter (a numbler a little greater than 3). This com-
parison of circumferencés with dlan}eters of many circles leads to gener-
alization of the formulp C = 7 d.

Such exploratory 3ctivities should be used to introduce each of the
measurement concepty including volume, capacity, mass (or weight),
temperature, and time. Insofsar as possible, actual use of instruments,
reading scales or cou;ting units, making comparisons should precede
any attempt to genefalize with formulas. The added benefit, is that
students will be prepared to use the tools and standard units of mea-
surement in daily applications.

CONCLUSION ;

In a concern fof “hack to basics,” measurement as a basic skill for

+
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cal revolution continues, the uses cited in this article are only an infin-
jtesimal part of the potential role of measurement in the life of every
individual. .

Mlmmal literacy will requlre the al:nltty to use and understand a
variety of measurement units. Even at the ordinary consumer level,
measurement comparisons are essential to wise spending. As inflation
continues, such consumer wisdom becomes even more critical.

_Similarly, beyond minimal competency, if this country is to con-
tmue to prosper in an international setting, education must prov:de the
scientists and the engineers to maintain a competitive technology and
industry. An essential ingredient in such education is a thorough foun-
dation in all aspects of measurement. ’

Between these extremes, minimal daily existence and top-level
technological contribution, lie many tiers of varying sophistication in

the apphcatlons of measurement to everyday living and to jobs. Mea-
surement 15 indeed a basic skill.
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COMPUTATIONAL ESTIMATION

Did you try to do these problems quickly in your head? Most
people do. It is not always convenient to write everything down. In most
cases an exact answer is not necessary but the answer should be close

--enough-to.allow for. whatever decisionmaking is required. For example,

. if you have only one dollar but order a hamburger and milk, this deci-
sion would lead to some embarrassment. Everyone encounters such
consumer-orieated problems daily. Each problem involves computa-
tional estimation and thus reflects the theme of thls article, namely that
estimation fs 5, basic skill.

All ot the opening questions require pmblem-solvmg skills. How-
ever, each of them js different from typical school mathematics prob-
lems. For example, .

1. They can be solved without paper and pencil.
2. They rely on meniat computation.
3. They can be done quickly since time is usually at a premium.

4. They result in answers that are not exact but are adequate for
making necessary decisions.

These features characterize computational estimation, which has been
identified as a basic skill (1, 5, 7). In fact, mental computation and
estimation skitls are used much more frequently than paper-and-pencil
algorithmic procedures jn solving real-world problems involving math-
ematics. Whereas technological advances with calculators and mi-
crocomputers have lessened the need for traditional paper-and-pencil
algorithms, they have increased the need for computational estimation
skills that provide quick checks of the reasonableness.of answers.

-

STATE OF THE ART :

Despite its importance, estimation is perhaps the most neglected
skill in the mathematics curriculum (3). Traditionally introduced around




the fourth grade, computatsonal estima on frequcntly appears as a sep-
arate topic that is poorly motivated and often ignored in later work with
computation. A review of mathamatics basal textbooks (10) shows very
little attention given to the systematic development of computational
estimation skills. In the vast majority of series the emphasis given is
wocfully lacking. According o a recent study of three popular mathe-
matics textbook series, estimation appeatred in l¢ss than 3 percent of the

_lessons {6). R 4

This lack of attentish to computahonal eshmatlon in school pm—

ms-was-documented in a recent study of in-school secondary stu-
dcnts and out-of-school adults who had.been identified as good compu-
tatioral estimators (8). In answer to the question “Have you been taught
how to estimate jn school?” the predominant answer was that the
students had been taught to round numbers, but they rarely used this
skill in conjunction with ejther the development or practice of estima-
tion ability. Most students vojced uncertainty about where or how they
had developed their skill, frequentlv suggesting that they picked it up
through the need for an efficient, reasonably accurate computational
tool. Conversations with the adults provided similar information; they
could not recall estimation being explicitly taught in school.

. Ths lack of attention to computational estimation is refiected jn the
low performance of all age groups in the second National Assessment
of Educational Progress (4). The results of one multiple choice exercise
vividly jllustrate the poor performance of students:

. ESTIMATE the answer to %5 + %. You will not have time to
solve the problem using paper and pencil. T

o Chaices T Age 13 Age 17
<o 1 - 7% 8%
o 2 24% 37%
oo I £ 28% 21%
<o 21 - 27% 15%
< 1don’t know 14% 18%

These results show that only 24 and 37 percent of the 13- and 17-year-
olds, respectively, responded correctly. Even worse is the fact that over
one-half and one-third of the two age groups selected values that were
completely unreasonable. Rather than estimate the sum, many students
attempted to operate directlv on tf, numbers with no concern for the
reasonableness of their estimiate. Thz., performances were consistent
with those reported by the NahonalaLongltudm-l Study of Mathematics
Ability (11). e

There has been little research on the ahlllty of siv.. ents to perform




computational estimation. When students are asked to estimate, their
response is often to try to wark the problems quickly with paper and
pencil, then round their arswer to reflect an “estimate” (2}. This proce-
dure is clearly not computational estimation, but the tendency to use it
is a major confounding variable in assessing estimation. This is one of
the reasons why estimation skills are difficult to assess and have dis-
couraged the authors of many standardized tests from including Ques-
tions related to computational estimation. In fact, the statewide assess-
ment in Missouri, the Buasic Lssential Skills Test (BEST), explicitly -states
that estimation is viewed as a basic matl..natical skill but that the
respensibility for checking studént perfofinance restsat the tocalschoot

-~ level—The-irony.of a test_purporting to_measure basic skills but not
attempting to assess computational estimation is difficult to understand.
Nevertheless, it is a testimony to the psychometric problems that are
introduced when assessing computational estimation (9).

A recent rescarch study identified and described computational
estimation processes used by good estimators (8). This research resuited
in identifying some specific characteristics, skills, and thinking strate-

_gies that have instructional implications. The instructional suggestions
that follow reflect this rescarch base. It is hoped that these ideas will
stimulate increased efforts to develop computational estimation

throughout the mathematics program.

POWER AND PURPOSE OF ESTIMATION

A major obstacle to instruction on estimation can stem froni inap- _
propnate attitudes about what estimation is and its potential use. Stu-
- dents see estimates as “second-rate” answers, not quite so good or
useful as exact answers. This attitude can cause students to ignore
techniques being taught and simply try to compute faster. For tnis
reason, an awareness of the importance of estimation can and should
begin with young students. {nstruction and experiences in generating
real-world estimates will further enhance students” awareness of the
power and usefulness of estimation. ‘
Beginning with a discussion of various examples of estimates,
teachers shovld emphasize the everyday, real-world importance of esti-
"mation. For example, which of the following situations expect an esti-
_» mate? Which require an exact answer?

"How much money will be needed for e Saturday afternoon

show?
Haw old are you?
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"How many brothers and sisters do you have?
What is the time?

How many people attended Friday’s football game?
What tip should 1 leave the waitress?

For some situations an exact answer 15 essential and an estimate makes
little sense. In other instances, such as one’s age, an exact answer is
cumbersome and provides no better information than an estin te. Stu-
dents quickly realize how often estimates are used in their daily :xperi=
ences and can begin to generate other examPles. Manv terms are as-
sociated with estimates. These terms help us recognize an estimate.
e BOICOUTARE. students_to_generate a list_such as_the_following: almost, ... .
nearly, close to, approximately, around, over, about.

" These-initial-experiences-will-help-students understand the power
and purpose of estimation. Once this attit'1de starts to form, instruction
on a variety of strategies can begin.

FRONT-END STRATEGY

~— ——_—_A very basic, yet powerful, estimation strategy which <an be used
in a variety of situations and taught to the young student is a front- —
end strategy. In estimating, the most important digits in a number are
the leading or front-end digits. Unlike computing with paper-and-
pencil algorithms where work often begins on the back-end digits, an
——— estimate-requires-a quick- and-accurate-answer thut is asrived at most _—_—
efficiently by focusing on the front-end digits. To help students un-
derstand this idea, hide 2 three-digit number behind a poster on the e
board. Ask students to guess a three-digit number and see how close
they can come to the hidden number. Before guessing, give them the
opportunity to see one digit of their choosing. As students try this
activity, some will choose the hundreds digit. This gives the most use-
. ___ful information. Others will ask to see the ones digit. Will this infor-
- mation. be of.as much help? Why? A few such experiences will help ———
students see that the leading digit is powerful because, together with
its place value, it represents a good approximation of the original
number,
To infroduce the front-end strategy for addition, present a problem -
- - such as. the one that follows. A portion of the problem has beentorn ™
away and some information is missing. If the missing plece ‘cannot be”’
found, can an exact answer be determined?

e s e s e 57_____________5.:? U ___
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- Since the.  feading digits are v |$1I.lc ¢ students can use them to formu- _ ___
late an estimate. For example, 4 + 2 + 3 = ¢_Ts ¥ agodd estimate? |t - ——
looks as if each of the numbers in the problem contains 3 digits, there-
forc 900 rather than 9 is a reasonable estimate, Other diswussion can
fouch upon-such guestions-as-these:—-

Is-900-an-over—or.underestimate? e . ... . L. L . L
How can we get a closer estimate? |

’ractice in using this strategy is itnportant. Initially, provide the
~—~---¢over-for the. baci:end, digits as in the next example. Give students
similar problems where they hide the back-end digits by cévering them — — ~—
with a hand or card. it is alco helpful to limit Jeading digit addends to e
a sum of nine or less. After a few such experiences, pose an example

where this sum causes an increase in digits.

4 —c 9
. ——— 2 . )
+ |5 = o+ 2 ?

T L 7 T

Immmediate feedback on students’ performance jp providing esti-
mates is important. Be lenient in accepting responses initially. but ask
students to explain how they obtained their estimate. Their explana-
tions will help clarify procedures and lead io gréater understanding of -
their processes, and also suggest new approaches to estimating a given
problem.

- Although we have suggested the use of this sirategy with young
students, there are a variety of applications of its use for older students
and aduits, For example, - -- s - .

B

What is the attendance 1978 42,946
for the past five Soap Bowl 1979 51,895
e+ e AMEST . o 1939 48,987
To19B1 T 71,4327 e - e
TUTTTTTTI I e e L1982, . 78,823

I s b iy b d = ks e e a s e
T e e t— s
L
W s A——_ i ar e
A -

e e e 58 58 S e " e———




Front-end
pa - 1+ 111 (311 A W - M 5 7-=~9-gives27;-and-about-20
thousand more 15 about 29¢:000;
In using this strategy, the focus is on tivo importait aspects of
formulating an estimate. the leading digit and the place value of that
digit. Other followup activities might include:

_ Using larger numbers and/or more addends.

. _.. . Presenting probfems where C T 436
the place value of the h Tpg——
numbers is different. : 4204 :

i
. Dresenting problems in a horizontal
ST Cati-stadents=find-the

IPOTEITtgigits? - s e - 213+ 46 _+ 193
Developing the front-end strategy with

subtraction. What different ideas 4236
are involved? - =2517

Although the Eromt-end strategy illustrated is asy to understand
and apply, more precise strategies exist and should be developed as

——students mature. For- example,-if-cachv addend of - - e
436 -
79
4204
were sounded to the nearest hundred, 400 + 7100 + 200 givesagood.
‘ estimate of the sum. This technique requires both rounding and mental -
. visualization of the numbers, which adds to the complexity of the task.
The added precision Yiclded by this technique is important, however,
and should be encouraged as development continues. )

USING COMPENSATION TO REFINE ESTIMATES

#oﬂq@g_@vclop}hent of mental computation techniques with
multiples of 10, estimation of products follows naturalty For example,

The nearest tens are 40 and 50.
40 X 50 is 20 with two 0s
or 2000.



because | rounded up on both
Tambers 2000 isan————- . .
overestimate.

T3 47 = a little 9
( under 2000 o -t

*

" The student in this example uses the idea of compensation to further
— * refine-the initial-estimate: What about these examples:- - e e e
% )

Think - Reported Kesult
2% 6l = 40X 60 =300 “It i a li
2 X = 40 X 60 = 2400 1t is a little more than 2400,
39 % 78 = 40 X 80 = 3200 7 "It a ittle fess than 32€0.”
- - S
S ——— L — o
TRE T3 30=000— — - -“itisabout 9007 1 T 7 T - - -

- For the first two examples, the rounding procedure makes it clear that
the reported result is an underestimate or an overestimate, YWhat about
the last example? it is not obvious without further exploration.

-~ "SOME FINALTHOUGHTS AND SUGGESTIONS- -~ - — — e

Specific estimation strat cgles abound. As students begin to practice
and use estimation, they will develop strategies and techniques for
different operations and types of numbers on their own. Verbalization
of these specific strategies will help clarify and refine their use and will
encourage others to use these ideas and to search for and discover other
ways to efficiently estimate. The imporiance of such discussion cannot
be overemphasized.

— Gmdlngstudents through a meaningful and lasting development of
estimation ‘strategies and subskills cannot be done in a singie unit. —
Instruction should be systematic, starting as early as third grade. We
have described several suggestions for specific lessons. Here we high-
Tight some additional suggestions and ideas for implementing an-estima="-
tion fcarning sequence,

1. Instruction on estimation should include discussions of why and when
: to use this skill ove? exact computation. This discussion will help stu-
- - dents develop a tolerance for error so-that they can begin to feel com- - .l

e e an - e m——— . o
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fortable witl an answer that is not exact. For examole, a review of a few
arllclcs in a daily newspaper will rexeal many examples of numerical
—datr—someot-which-are estimates; sfome exact values. Have students
identify the examples they feel are estimates and discuss why.

2 Strategies such as the front-end technique described can be meaning-
fully developed with young students, Therefore, selected strategies
should be taught early and not delayed until later grades.

Mental computation is an impottant prerequisite skill for many estima-
tion strategies. Therefore, this skill should be systematically developed
and practiced prior to and along with estimation. A starting point is .
work_with_powers and multiples of 10. What patterns appear when
powers of 10 are muitiplied by numbeérs? What patterris-appearwhen
multiples of 10 are mcitiplied by other multiples of 10? These ideas can
be developed and refined by providing a few experiences. For example,

10 100 1000 X 30 50 60
3 . 20
4 40
50
9 ?0

. o r—— —— e —— —- -

'a'f_p”aﬁ' s 'énierze‘as—lhese tables-are completed?uCan students _ o
verbalize rules for multiplying by powers of 107 How about multiples
of 107 This work will help pave the way for success at using rounding
and other more sophisticated strategies.

. Instruction on how place value is affected by certain operations of
arithmetic will help correct order of magnitude errors for multiplicition
and division. For example,

. —— e e 59
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The estimator might reformulate” the problem to 60)780,000, Is the T
estimate 87 807 8007 8,0007 or 80,0007 Instruction that includes tech-

niques for determining appropriate place value will help avoid unrea-

sonable answers.

5. The idea of compensation—that is, refining ap initial estimate—should
be encouraged. Verbal compensation can be used in the beslnmng This
refers to stating whether an estimate is ' littie over” or “a little under”
the exact answer. Later, arithmetic procedures can be used to establish
a numerical cornpensahon For example, to estimate 27 X 41, we could
round to 30 X 40 or 1200, 17 '0 is about three 40°s too high, so a more
refined estimate is 1200 — 120 or 1080, Applied estimation problems
may evoke a different type of compensation. For example, in the fol-
lowing problem an overestimate is likely to occur to ensure-having -~-——--
enough money to attend the progtam. Thus, in this example. 2 mean-
ingful yationale can be given for compensating upward. A

Movie tickets cost $3.25 for adults and $1.75 for children. About how
much will tickets for three aduits and one child cost?

: A e - -
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6. The vahie of applications of estimation cannot be overemphasized
Real-world consumer-retated and other settings should be used to de-

velop and practice estimation strategies. For example, supply a grocery
store sale bulletin and estimate the cost of grocery lists. Other uses of
this bulletin can be made for generating estimation questions.
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About how much will five bars of Safeguard soap cost?
Is the dish liquid priced at more or less than 2¢ an ounce?
About how much will five pounds of sweet brown onions cost? °

A school activity such as a plav can also generate estimation questions:

clags need to sell to fill the gym?
If we charge 50¢ for children and 7$¢ for adults, what will be our

income?

About how much will our expenses be?
How much profit can we expect?

1. we sell cokes for 30¢ each during intermission, how much will we
make? (To answer this, we'll need to know about how many people

will likely buy a coke.)

7. Finally, instruction on estimation should be given on a regular basis.
Regular practice and feedback should occur frequently (perhaps two
10-minute sessions weekly). A quick practice idea is to tuke three or
four pjeces of tagboard and place 2 number on each. For example,

—~About-how-many-people will-we-be-able to-seat in our gym?
If we sell advance tickets, how many tickets will cach inemberof the——-

347

10,427

6.819

4,709




PAFullToxt Provided by ERIC

Ask students to number their papers rom 1 to 4 (or more). Show
students any two (or three) cards at a time and ask them to estimate the
sum (or difference}. From these four cards You can generate six different
two-addend problems. You can also easily control the time allowed on
each problem.

NO DEFAULTS, PLEASE

We have presented an overview of computational estimation,
which is indeed a basijc skill. Although current performance levels are
disappointing, they seem to reflect the attention given this topic in

"current mathematics programs. According to experience and research,

useful estimation techniques exist but are possessed by very few. In
order that moré people may develop these skills, computational estima-
tion must be mtegrated into current mathematics programs and must be
taught systematically. Research has provided new insight and some,
direction. In this discussion we have provided a modest but essential
first step that must be taken to get started. So little has been done with
computational éstimation, that, in a very real sense, it is a new game.

The baii is in the reader’s court. The importance of keepmg it in play
should not be underestimated.
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Finding and Using Data: A Basic Skill

Albert P. Shulte

Nearly everyoie needs the ability to deal with data. In a typical
day, an average person might do the following: look at a table of in-
gredients to prepare a new recipe; read a mileage table to figure out the
distance to another city; look at the batting averages in the sports page
to check the hitting of local favorites; read the results of a poll on
preferences in a gubernatorial race; look at a graph to see how much a
tax limitation proposal will save taxpayers; examine a chart or profile
of a child’s performance on a standardized test.

At the same time, the schools are presently doing little to improve
students’ ability to deal with data. Part of the problem is the name often
~ attached to this skill—the word sfafistics scares many people. Also, math-
ematics instruction at the elementary wchool level tends to concentrate
almost exclusively on computation. And, at the secondary school level,
work with data js usually included as an optional chapter late in the
textbook, and thus is treated as an expendable extra.

What can be done to provide students more opportunities to work
with data? In this article, a number of activities at different grade levels
will show ways to provide such opportunities, without requiring large
blocks of time, much technical Janguage, or extensive background on
the part of the teacher.

*
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In this. article data-related experiences are classified into two
major groups: (l)ﬁnds:;g data-—sources of data that can be used with
students; (2) using data-..what can be done with data after they are
collected. e

-~

FINDING DATA e

S
Data may be collected from a variety of\§ou{£:es: The teachdr who
wishes to use data in the classroom and who kcéps%nh
interesting items will discover many good sources in his

often include the results of polls (furmal and informal). The sports pd
are full of statistics.

Another source is the magazines and periodicals people read for
subjects of personal interest. For example, two of my favorite exam-
ples came from Nalural History magazine. One article discussed what
causes flying squirrels to store nuts—a fine controlled study presented'
by means of graphs. Another article compared roadrunners to pigeons
in various tests to sce why roadrunners were specially adapted to live
in the desert (it turned out that they were not). The TV Guide is an
excellent source—ratings are 50 important in television that many arti-
cles appear on subjects such as the following: Which programs appeal
mgst to young adults? Does TV make childrcn more violent? Why
does golf, watched by relatively few people, rate so much exposure?

A number of general references can supply data of interest to stu-
dents. For example, Th¢ Book of Numbers is a fine source. Among other
references, the Guinness Book of World Records can be used as the basis for
contests in which students can generate their own data; and the Stafistical
Abstract of the United States contains a wealth of data, some of which is
interesting to students.

Students can also be encouraged to collect their own data. They can
bring in items from their own reading or browsing. They can be assigned
to look through newspapers for data, or to examine magazines in the
school! library for appropriate articles. They can perform experiments
and record their results. They can carry out surveys, which requires
thent to deal with such questions as sampling error, biased samples,
taking random samples, and waking sure that *he sample is representa-
tive of the group being sampled.




USING DATA : ’

Once data are collected, what can students do with the informa-
tion? They can learn to organze the data, to display the data effectively,
to swmmarize the data, to make prediefrons based on what they have
found, and to make wiferences. Here are some examples to illustrate these
arcas.

Organizing and Displaying Data
Objeet Graphs. Young children can make graphs by using actual objects
and attaching them to sheets of tagboard. For example, they can show
their preferences in color of crayun by attaching the appropriately col-
ored crayon to the fagboard.

Picture Graphs. After experience with object graphs, students can move
to the next level—using pictures or drawings of objects and attaching
these to tagboard. For example, they can use pictures of their favorite
pets. Another graph appropriate for primary classes is one with a paper
tooth attached for each tooth that a child has lost.

TEETH MISSING
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Taltwing. Students can be taught to tally in the usual manner, showing
the results of throwing a die, spinning a spinner. or some other activity.
The following illustration shows the results of three children playing a
game 20 times.
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Senm-and-Leaf Display. Upper elementary and middle-school students can
be shown how to present information using this new technique. Sup-
pose the class has 29 students, and they have found their heights in
centimeters: 157, 148, 160, 142, 151, 164, 151, 146, 134, 138, 162, 142,
155, 155, 151, 167, 152, 143, 159, 154, 157, 140, 155, 142, 145, 159, 138,
141, 146. These data are arranged in the following stem-and-Jeaf dis-
play. with the first two digits the spems and the third digits the laves.

13 | 4, 8 @— LEAF

STEM -—-....@ 82 6,2 3,0 2 5 1,6

15 7.L,1,55 1,2, 9,4,7,5 9

16 ¢°0.4,2, 7

Notice that none of the original information is lost, and the arrangement
of the data makes a sort of bar graph. If the stems aré arranged in
numerical order, the middle score (the median) can be easily located as
follows:

13 4, 8 8 g

L]

¢

14 0. 1.2 2 2 3.5 6, 6 8
MIDDLE

HEIGHT
15 1.0&2. 45.5.5.7.7.9.9 . aMEDIAN)
{151 Cm)

16 0, 2 4,7

Box-and-Whiskers Plot, This technique can be used from middle school u
to give a picture of a collection of data. Using the height data aboé
students can find the quarfils. These are the middle scores in the upper
half and the lower half of the scores: 157 cm and 142 ¢m, respectively.
The box-and-whiskers plot follows.

— | —

} ] 3 ! ! ! 1 IS !

126 130 135 140 145 150 135 160 165 1707
HEIGHT INCENTIMETERS

The box shows the middle half of the class. The whiskers go from the
box to the shortest student, 134 ¢cm, and to the tallest student. 167 cm.
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\Themmc‘" n is shown as a vertical line inside the box.

Summarizing Data

Averages. Two types of numbers are important in summarizing data. One

of these is a number that gives some information about the middle of

the distribution—an averag¢ The three most common types of averages

are as follows. the mean (which is what most people call the “average”
—add all the numbers and divide by the number of numbers); the median

{the middle score in the distribution); the mode (the most common num-

ber). In the exam:'2 of heights, the median nas already been given as
151 cm; Thefe are three modes, 142 cm, 151 cm, and 155 cm, since each”
occurs three times hh:El:‘rfﬁlﬁ_ih_ewr“ height occurs so often. The mean is 150 N
cm, to the nearest centimeter. . .
Spread. It is also important to have some information about the spiead
of a distribution. If two cities have an average temperature of 64° F,
would you conclude that they are equally pleasant? You might, if that
is the only information given. What if we also tell you that one city’s
temperature ranges in a typical year from —15° F to 80° F? This last
information uses the rangr—theyﬁiffc{ence between the highest and
lowest scores. It is a common way to give in@rmation about spread. The
box-and-whiskers plot showed the range, and. also gave information
about the middle half of the distribution—another useful measure of
spread.

Predicting from Data
- One-type of higher-level_problem involves predicting from data.

For example, it is common folk wisdom among baseball fans that play-
ers who hit many home runs also strike out many times. s the reverse
also true—if a player stnkes out many times, does he/she also tend to

. hit many home runs? If so, can we use the number of strikeouls a player
makes in a season to predict the number of home runs he/she should
hit? This can be illustrated by using data for the Datroit Tigers in 1968
—the last year they won the American League pennant. At that time,
ali players in the lineup, including pitchers, batted. A scatter plot for the
team, showing strikeouts against home runs for each player, follows,
Each dot iepresents one play«r, except the dots at 0 and 2 strikeouts,
cach of which represents two players. From looking at the scatter plot,
1t is clear that there is a tendency for those players with more strikecut®
to hit more home runs. How can we use this information to predict, for
example, how many hortie runs should be hit by a player who struck
out 60 times?
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One way to do this is as follows: (1) count the number of points
plotted—27 (one for each player); (2} divide the points approximately °
into thirds—which is easy to do here, 91n each part; (3) find the median
number of strikeouts and home runs in the left-inost third—3 strikeouts
and 0 hnme muns; (4} find the median number of strikeouts and home
runs in the right-most third—70 strikeouts and 16 home runs; (5} draw
a line through the two points found in steps 3 and 4. This is the line
to use for predicting.

Find 60 strikeouts at the bottom of the graph. Come up to the line
just drawn, Go to the left to read off the number of home runs. Sixty
strikeouts shou* resuyit in about 14 hhome runs.

The steps just described are illustrated in the graph that follows.
Using the graph, how many home runs should a player hit if he/she
struck out 100 times? If a player had 10 home runs. about how many

. times did he/she probably strike out?
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—~Malang In{e:ences_ﬁnm_l)_ata

In the secondary school, data can be used for makmg mferences Here
are two examples where inferences can be used.

1. One hundred tosses of a coin result in 65 heads. Is it reasonable
to suppose that the coin or the tossing process is biased in favor
of heads?

. A teacher has developed a ncw way to teach verbal problems
to her algebra class. She uses the new method in three classes
and the old method in two classes. The average score on a
20-peint test is 14 for the new method and 11 forethe old
method. Is the difference large enough to be fairly sure that
the dif.;ence is really the result of the new teaching method?
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To answer questions like these means that one has to learn special
techniques for measuring the importance of differences cither between
groups, or between what happened in an experiment (65 heads in the ~—~ =
coin-tossing experiment) and what one would expect to happen (50
b, ds). Some of these techniques require a strong mathematical back-
ground and would be appropriate only in schools for junior or senior
students with three or more years of college-preparatory mathematics.
Other techniques involve simpler notions. such as counting, arranging
scores in order, and simple mathematical operations. These techniques
are grouped under the heading of nonparametric statistics. and could be
taught to most high school students. -

RIS - £

CONCLUSION - T e e

et
This article haslooked at some ways in which people .0 and i%e

dota. Everyone deals with data nearly every day—collecting data, or-
ganizing data, interpreting data for oneself and for others, summarizing
data with a few numbers, making predictions from data, and drawing
inferences from data. Examples have been given, ranging from graphing
at the elementary school level to working with more formal statistical
methods in the senior high school. ‘
e The ability o work with data is a basic skill, one that at present

is not adequately treated in most texibooks. Teachers need to provide

experiences for students to work with data, and should introduce such

work inte the curriculum. Such experiences should not just be part of

the mathematics curriculum, but they should also be incorporated into
_the science and social Sstudics areas, where the data relate to real situa-

tions. T T e e L.

Data collection and analysis need not take large blocks of time from

=—-~— other study._Appropriate activities with data can provide students an
"~ opportunity to apply mathematical skills as they learn them, thsrein-" "~
forcing regular mathematic . instraction. Morcover, these activities are
appealing and motivating to most students.

e




Problem SOIvmg Searchmg for Solutions

s e e Mary. Grace Kantowski. .

In one of his characteristically insightful moments, Mark Twain

. -_observed that everyone talks about the weather but no one does any-
thing about it. .
These days, everyone is talking about problem solving:

»  The National Counci} of Teachers of Mathematics listed as its »
first item on the Agenda for Action (2) that "problem solvmg
should be the focus of school mathematics of the 1980%.’

+ DPresentations related to problein solving dominaté national,
e semme <omer - -TegiONAl,_dnd . local professional conferences... ... .

+» More and more pages-of mathematics textbooks are being

devoted to problem solving.
+ DPublications and projects related to problem solving are <on-

tinually appearing,

—

Although everyone talks about problem solving, only the teacher
in the mathematics classroom can do something about it. The teacher
truly holds the key to the development of problem-solving ability in the
student of the 80's. Curriculuin developers and other mathematics
educators offer direction and support, and textbook publishers provide
astructure for instruction and a host of materials, but in the last analysis
it is the teacher who mects the student day in and day out, who is




charged-v. h-develuping the problum-solving potential of each student
to his or her capacity.

. Al this point many questions about problem solving .nd its role in
the curriculum arise:

What is problem solving?
“ow significant is the role of the teacher?

¢ we calling for an end tu the back-to-basics movement?
Will the advent of the microcomputer have an effect on the
problem-solving curriculum?

*
*
*
*

-WHAT IS PRQBLEM SOLVING’

There are many mlcrprclat:ons of the meaning of the word Jproblem
To somey particularly those who work wllh children at the early ele-
mentary level;-problems.are verbal or “word” prehlems. To others, they
are nonroutine situations, such as puzzles, Ioglc problems or Those réx M
quiring a bit of insight or creative thinking often found in ““challenge”
sections of textbooks. To still others, they are applications, or real-
world problems. » problem can be “any of the above.” What is a
problem for one student may not be a probiem for another—or even for
thie same student at a later time. For most students, textbook word
problems are probloms at first but they become exercises once students
learn an algorithm or method to solve them. What makes a problem a
problem is that, at least at first, there is some uncertainty about how to
find a solution. Students have at their disposal, or can easily find, all the
necessary facts but they are unsure of how to put them together to
complete the task at hand.

Probiem solving is the ectivity involved in trying to find a solution to
a problem. This is a very important point and merits repeating: problem
solving is the achiordy of searching for a solution. Problem solving is not
necessarily finding a solution—although the ultimate purpose of in-
struction in problem solving is, to be sure. the development of the
ability to solve a variety of problems. Before this goal is reached, how-
ever, the process of searching for solutions has a great deal of value in
itself because it gives the student a sense of what works and what does
not. Becoming an expert in problem solving is somewhat analogous to
becoming an expert in gymnastics. Before the routines aye perfectad
there are many spills and bruises and a great deal of discouragement, but
in attempting new moves the gymnast develops a “feel” for what can
,be done. . '

In many aspects of mathematics a desired outcome is the knowl-
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cdge of facts (such as the multiphcation tables or common sets of Iy
thagorean triples) Gr skl i The use of o algorithm (such as the abil- —-
ity to apply the fomula for the area of a triangle). In such cases the
amsicer O the predmt is important. If problem solving is viewed as the
ativity involved in finding a solution, the solution jtself no longer
becomes all-important. the steps taken to find the solution take on
greater significance One jmipurtant vbjective of instruction in problem
solving is to_help students Jevelop the .1b|l1ly‘lo approach problems.
tv Tearn to bring to bear everything they know that might be relevant
to a particular problem, and to develop confidence in their ability to
deal with unfamiliar problems. The activity or press of problem solv-
. —ing zather than the answer or prodict is what problém solving is all ™~
about.

This change of focus from the solution >f a problem to the ac tivity
of prublem sclving has many implications for instruction. Much more
time will have to be spent on Aoy the solution was found. on how, for
example, the decision to use a particular algorithm was made. Some
tec hniques for dealing with r ations are needed. Instruc,ion for
problem solving should inchaae L0020 rules of thumb (also known as
heuristics) that will help students find ways to put together all they
know to arrive it a solution.

George Polya (3) suggests a simple model for what goes on during
problem solving that can serve as the framewaork for a model for instruc-
tion According to Polya there are, or should be, four phases in the
solution of a problem understanding the problem. creating a plan,
carrying out the plan, and looking back. When good problem solvers are
studied in the process of solving problems, at least the first three phases
are usually observed. Polya suggests that at each phase the problem
solver ask himself or herself sey.:ral Questions. These questions can
serve as an instructional tool for introducing the techmques of problem ____
solving. During the introduction of problem solving, it is crucial to 1
spend a good Jdent of time in the first two phases—understanding the
problem and creating a plan Because they have spent 5o much time in
mathematics simply appiying alyorithms, many students ship these two
phases and immediately junip into phase theee of the model by trying
to apply somie formula or operation to the quantities involved. Ques-
tions based on Polya’s phases serve as slow-down mechanisms that
force students to thind about the problem a bit before making a hasty
decision to ¢ something. Such questions as

Would a diagram or figure help make the problem clearer? or
How is what I'm given related to what I'm looking for?
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help students focus on trying t0 understand the problem, while such
questions as-- —

Have [ seen a problem like this one before . . . how did | attack it?
~™ Could J-organize my data into a table? or
Is it possible to establish a pattern and generate asolutionthat way?

help students try to come up with a plan that might be useful in a given
case.

A caution is in order here: Instruction in such techniques will be
fruitless if students are not rewarded fcr using them. Talking about the
importance of the activity of problem :olving will fall on deaf ears if
students receive credit only for correct sotuicns. Grading procedures
must include some rewards for good efforts—even for those that fall
short of a successful solution. That success will coine in time.

-

HOW SIGNIFICANT 1S THE ROLE OF THE TEACHER?

The importance of the teacher’s role in the development of prob-
lom-solving ability cannot be overemphasized. Instruction in problem
solving is, perhaps, more teacher-dependent than instruction in any
other area of mathematics. The function of the teacher includes more
than the obvious tasks of introducing techniques and strategies for use
in problem solving and proposing sets of problems appropriate for par-
ticular students. The teacher has the capacity to pace the jnstruction
according to students’ needs—to give them help when they need it but
to leave them to their own devices when they are engaging in fruitful
activity. The teacher can answer questions {or perhaps not answer.
them), pose probing questions at opportune times, and present more
challenging problems or different solutions to already solved problems
__when the occasion arises. The Agenda for Action exhorts teachers to “cre-

ate classroom environments in which problem solving can flourish” {2).
The enthusiasm with which a teacher reacts to novel solutions and
intriguing problems may be intangible and not easily evaluated, but it
is as important as any instructional technique. How many bright young
(or older) scientists and mathematicians when asked to pinpoint the
start of a love of mathematics that eventually led to a successful career
reply, It was Mr. Harvey back in the grades . . . he was so enthusiastic
and gave me a curiosity about mathematics.” or “Mrs. Travis who was
the moderator of the Math Club made me experience the excitement of
an intellectna} challenge.”

Because students view the same problem in different ways, one of
the teacher's most important roles is to stimulate thought and to encour-
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age a variety of ways to yolve the same problem. The problem which
follows is an interesting example. 1t is challenging enough for a math-
ematician or a college student who has not seen it before, yet simple
enough to make it ari excellent vehicle for discussjon or group problem
solving Jt-the middle school, junior high or secondary school level:

Problem: The integers greater than one are arranged in columns as
follows:

) 3 4
9 8 7 6
10 11 12 13
17 16 15 14 etc.

In which coelumn will 1000 fall?

An effective teacher can use a problem such as this to great advantage
by having students generate a number of different sdlution paths (al-
though there js only one soluticn) and by having students create prob-
lems that are similar. Recently, seven different solution paths were
generated in a group of 17 students, each working independently. All
students noted that 1000 would have to fall in either the second or the
fourth column, and although al! planned to generate rows until they
found a puttern that could be generalized (or ground out) to find the’
desired result, the patterns they developed were very different. Some of
the techniques usea to find the solution included the following:

5

1. Multiplying each element of the table by 25 and generating rows
to 1000.

Generating several more rows and noting that odd multiples of
100 are in column 4 and even multiples of 100 are in column 2.

. Noting that rows beginning with evén numbers are ascending
and those beginning with odd numbers are descending: finding
two possibilities for rows containing 1000, then finding the row
with the form 16n + 14,

. Noting that initia elements of the outside rows differ by 8 and
that numbers of the form 13 + 8n ascend in column 4 and
nurmbers of the form 17 + 8n descend in column 2; then finding
the closest n (123) and the row containing 1000.

Studying the variety of solutions to a problem such as this not only
gives students a look -t alternate ways to solve a problem, it also gives
them a wealth of information about relationships among numbers and
classes of numbers that can be useful in future solutions. Presenting one
brief solution to the problem with the “answer”—the fact that the




number 1000 would ¢.cur in cohnn 2—would deny students the op-
portunity of engaging in some fruitful problem-solving activity and
finding techniques and results that cnuid be useful {ater.

Finding a-solution to a challenging problem such s this is not
always casy—in fact it can be downright difficult What often happens
in class, however, is that a nice solution that inay have taken minutes
{or even hours} to find is shared with others with a littfe handwaving
and a few marks of the chalk. Wide-eyed students stare in amazement
at a colleague or a teacher thinking, I could ne~er Fave come up with
that.” The truth is that they probably could have-—with guidance and
practice, Students need to see that problem solving involves some un-
certainty and that they may follow many plans into dead ends before
they find the path that finally leads to a successfnl solution In short,
they need to see that it isn’t as casy as it looks. Occasionally solving a
problem for the first time with students and sharing insightful moments
with them can constitute a very gffective lesson.

ARE WE CALLING FOR AN END TO THE BACK-TO-BASICS
MOVEMENT? :

1t may seem that the call for greater einphasis on problem solving
is incompatible with the back-to-basics movement. On the contrary,
problem solving == a basic skill. In its Position Paper on Basic Mathemat-
ical Skills (1), the National Council of Supervisors of Mathematics listed
problem solving as the firsf basic skill area, noting that this area includes
such activities as posing questions, applying the rules of logic, deter-
mining which facts are relevant to a problem, and scrutinizing tentative
solutions. This position does not minimize the importance of compuia.
honal skl it simply emphasizes the fact that there are important basic
skills other than proficiency in the ability to perform the four basuc
operations.

%very teacher L:as had stndents swwho know the facts but who have
difficulty in solving nonroutine problems. in the clementary grades are
students who know their tables and who do very well on their drill
sheets, but who cannot solve word problems; in the secondary school
are students who know how to work with algorithms in algebra but who
have trouble in applying the algorithms in application problems: in
geometry classes are many students who do well in the computational
aspects of the subject but who cannot complete an original proof.

These all too common situations support the NCSM position that
shills other tha't computational skill are necessary for effective problem




solving This is not to say that computational skill s not important. -
Computational skill is*a necessary condition for successful problem
solving It is not, however, a sufficient condition, other skills are neces-
sary, and comparable emphasis must be placed on these other skills in
instruction.

WILL THE MICROCOMPUTER HAVE AN EFFECT ON THE
PROBLEM-SOLVING CURRICULUM?

. The advent of the microcomputer should have a significant effect
on the problem-solving curriculum of the 80’s. The graphics mode of
the computer has the potential to help students understand a problem
more clearly by providing excellent color diagrams and simulating mo-
tion in a way not possible on the printed page or even in other media.
Students can observe a diagram being drawn or see particular structures
being highlighted in color Using the keyboard or the paddles, they can
actuafly move objects while working toward finding a solution.

The availability of the calculator mode of the computer also makes
it an invaluable tool to use in teaching for problem solving. The school
curriculum does not yet reflect the advent of the now readily available
microcomputer to handle complex algorithmic and ite: ative calcula-
tions. Problems that are conceptually quite simple but that were for-
merly unsuitable for widespread use in mainematics because of tedious
and time-consuming calculations can now be included earlier in the
curriculum. With the computer available to do these calculations, the
student is free to engage in the real activity of problem solving—the
understanding, the planning, and the looking back.

CONCLUSION

During the 70’s teachers and rescarchers learned a great deal
about the processes of problens solving and about instructional tech-
niques that are effective in promoting successful problem solving.
During the 80’s it is up to mathematics teachers to apply some of
these techniques in their own classroom situations. Depending on stu-
dents’ problem-solving abilities, a teacher might assume one .of many
roles: that of model, groping with ideas and running into dead ends
before reaching a fruitful solution path; that of resource person or
“crutch,” encouraging or helping students who make their own suc-
cessful starts, or simply that of problem provider and facilitator for
students whe have gained some proficiency in problem solving. What-




ever the role, the teacher must be an integral and active part of stu-
dents’ problem-solving endeavors.

Problem solving abnhty develops slowly over a long penod of time
(4). This development is not sportaneous, however; it requires pains-
taking effort on the part of both teacher and student. It will be ensured
by instruction that includes emphasis on techniques that can be useful
in solving problems, and practice with carefully selected sets of prob-
lems. ? .

.
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Calculitors in Schools: Thoughts and Suggestions ‘
Sherilyn Setiz and Terry E. Parks .

t

The adyent of inexpensive hand-held calculators in the early 70
initiated the potential for striking changes in mathematics teaching. As
teachers require mathematics homework today, they must consider the
fact that the vast maijcrity of their students will have a calculator te use
in completing the assignment. During the Irte 70's student ownership
and access to calculators grew dramatically. Surveys in one district
(Shawnee Mission, Kansas) indicated that by 1981 essentially all stu-
dents, K-12, would either personally own or have access to a calculator
at home (see Table 1).

Calculator availability to students outside school mandates that
teachers implement practices which reflect their own or their school’s
posicies in dealing with this fact. Teachers (and schools) should first
determine whether or not they endorse the use of calculators in the
classroom. In either case. instructional plans and activities are affected.
The at:thors of this article and their school district have chosen to use
and encourage the use of calculators in schools. The thoughts and
suggestions herein reflect this philosophical commitment. The authors :
further believe that not to use calculators in classrooms is to ignore their
prevalence outside school and, in students’ eyes, to demonstrate a Jack
of realism or even hypocrisy.
The major concerns of teachers who hesitate to use calculators in




TABLE 1

* N
Survey OF CatcuLaTor AvAILABILITY TO SHawnee Miss.on, Kansas, -
STUDENTS ‘

YEAR OF SURVEY

(Projection)
1975 1977 1979 1981

Number of students

. surveyed 23,088 22,230 16,721 _—
Total:enrollment 40,648 38,822 36,816 —_
Percentage of district
enrollment surveyed 56.8 573 . 454 —_
Number of students
‘owning calculators 2,210 6,659 7,545 —
Number of students
owning/having access
to calculators 11,341 16,046 14,439 —_
Percentage of students
owning calculators 9.6 30.0 45.1 (60}
Percentage of students
owning/having access
to calculators, 49.1 72.1 86.4 {100}

their classrooms usually focus on a fear that compt “ational skill devel-
opment will be retarded by the calculator. A review of the current
literature (4) showed that skills were not 'ost when children were al-
lowed to have access to calculators. No measurable negative effects were
associated with the use of calculators for teaching mathematics. The
researchers observed that teachers who had not used calculators it the
classroom believed there would be detrimental factors, wheteas teachers
who had used calculators in the classroom found them to be a worth-
while tool. _ )

One study (3} asked teachers if students should master the basic
skills l».fore using a calculator. §t found that the 80 percent of the
teachers who had not used the devices in classrooms said yes, while
teachers who had used them were twice as likely to say no. Several
studies (1} have found that caiculators do, in fact, help develop mas-
tery of the four operations of arithmetic. The implications are that if
the entire school community became familiar with the calculator and
its potential for instruction, interest in and motivation toward mathe-
matics would increase. This observable increase in interest is sup-
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ported by.the (lassroum experience of teachers in the authors’ school
district.

HISTORICAL BACKGROUND

What is the historical context for the use of calculating tools?
Historically, the Chinese have been respected ior their business acumen.
Part of this ability has been credited to their compuiational speed in the
marketplace, which has been enhanced by the abacus. These nonelec-
tronic hand-held calculators have been used for centuries, without evi-
dence .f a lessening of their users’. computational abilities. The abacus,
or counting frame, was used 0y the ancient Greeks and Romans as well
as the Chinese. Throughout history a “reckoning board’’ has been used
to increase accuracy@

A more recent nonelectronic hand-held calculator was a sraall
board containing numbers which a stylus pulled into place to give a
reading of the total Another version was a small pldstic device invented

for use in shopping to add costs by clicking ones, tens, or hundreds in
columns as the shopper jlaced items in the shopping basket. Each
device had drawbacks, often greater than its advantages.

With the invention of the microchip the hand-held calculator wer*
through a metamorphosis. Decreases in size meant greater conveniet:. ..
and, with mass production, decieases in cost placed it within the reach

of virtually everyo-e, .

~

CLASSROOM APPLICATIONS AND ACTIVITIES

Teachers know that hands-on learning has always been effective
with, as well as appealing to, children. Most people enjoy doing some-
thing themselves father than just watching or listening to another. The
calculator lends itself beautifully to learning in an active mode.

Calculators can enhance the student’s appreciation of his/her own
role in the teaching/learr-ng process (2). Expluration leads to discov-
ery of reli:ionships and is often 2 reinforcemert of concepts *he
teacher has introdu<ed. For example, suppose the teacher has just 1n-
troduced the “fours” in the multiplication tables. On the calculator,
the student can supplement this leatning by first entering 4, then the
mulfiplication sign, followed by 1, and then trying to answer the
problem before [-.«ssing the équal sign. This process gives immediate
reinforcament for a correct answer or indicates an error. An effective
procedure that makes the drill moze palatakle is to have the student




repeat the equation until a twrreet match is made and then continue
withd X 2=..,,4 x3=...,4 .2 9=___, Sychah approach
to practice requires a minimum of adult supervision.

After the teacher has worked witk children in learning multiplica -
tion (or addition, subtraction, division), it is helpfu to let them check
their own papers. Calculators can be located at the teacher’s desk and
checked out to students when they bring a compieted paper to the
teacher. The child can then address the taslc of checking his/her cwn
calculations. It is a quick way for students to locate mistakes in “i¢
computation. If the answer on the calculator does not match the ansyszr
on the child’s paper, the response may sometimes be; “This caleulator
isn’t working.” This is a clue to the teacher that a student needs help

The ¢slcelator frees the teacher from awaiting tedious computation |
when introducing such concepts as partial products or the inverse pro-
cesses of multiplication and division. The ease of handling large nuni-
bers with a calculator opens doors for exploring c'énccpts that otherwise
mnust wait for complete learner mastery and proficiency in computation
Consumer mathematics applications are examples. As inflation squeezes
cach penny tighter and ughter, consumer topics have become more and
more important to individuals, and nore and more teachers ar all levels
are incorporating consumer mathematics applications into_their lesson
plans. Some examples of classroom activities simulating consumer uses
of mathematics follow.

Set up a classfoom store and ask students v bring empty food contain-
ers with the price stamp still showing. Cans and boxes showing ounces,
pounds, grams, or liters, and a price provide for the determinatien of unit

spnce. Companison values can then be shown Make shopping lists from the
items available in the store. Find total costs by usins she calculator

For a seasonal activity using 1 calculator t0 solve consumer mathemat-
ics applications from a newspaper, plan a hol'day menu by shopping the
advertisements of local grocers. Discuss and apply the sales tax usir3 the
calulator. Use gift lists and catalogs as well as ¢+ advertising media to
extend the process.

Discount houses offer catalogs that provide interesting consumer
mathematics calculator projects Assign the task of furnishing a baby's
room with bed, bassinet, playpen, etc. Let another student fumish a whole
house, or just a workshop. Compute the totals using a cakculator.

Interdisciplinary bulletin boards can be coordinated with a calculator
center. For example, place a state road map on the bulletin board. Outline
a trip to take around the state, indicating the highways to follow and the
sites 1o see. Students can extend the activity by computing the cost of the'
.iip when given sucn Information as g4z mileage and fuel costs, (for exam-
ple, & vehicle gets 20 miles/gallon at a cost of $1.29/gallun). Let students
devise their own trip providing them with 3" X 57 cards on which to write
problems for other students to solve. Such activities relate geography.

i
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history, and mapreading. and when students create their own problems,
they apply written communication skills.

Career and vocational educ.tion topics can be addressed using the
calculater as a tool in a simulation of a real-life situation. For example.
cleate a Testaurant setting in the dassroom in which one student takes
orders and figures the bill The customer c.n also check the restaurant bill
with a calculator. ]

Role playing with charge accounts is another way to heighten stndent
awareness of consumer concepts through calculator application. 5tutents
can compute charges mentally, then cherk with a calculator. They can also
examine the addition of interest and the effect of finance charges.

Career and investment-related topics can be uxtended to include the
stock market, commodities markets, money values. and exchange rates. For
exampic, compute stock values daily from the newspaper quetatiens.
Make graphs and note trends.

Traditionally. most classroom mathematics activities have used ditto,
worksheet, of workbook. Too often they lack variety und student interest.
A calculator is a learning aid and one that students eujoy using. Why not
permit calculators for the liomework assignment? Check out calculators to
students and ask them to do such things as determine the gas mileage for
the family car, or shop with a parent at the grocery store and total the cost
as items go into the shopping cart. Students can use real data and the
calculator to perform such studies as comparing—the price per ounce or
gram of meat (hamburger, steak, etc.) and snack feods (potato chips: candy
bars, etc.); the cost per calerie (or other nutritional unit) of different com-
modities. These kinds of applications are open-ended and |ifelike.

Ancther benefit of calculator use in the mathematics classroom is in
the determination of patterns and relationships. For example, at early
elementary levels. when students are working with multiplication they
“discover” that the product of 4 X 6 is four more than the product of 4
% 5, etc. They can also discover exponential concepts and patterns of
multiples using the calculator’s repeat functien,

In teaching estimation teachers need some way to keep students’
attention focused on the techniques of estiation. One way to do this is
to place problems on an overhead projector and ask students to write their
estimate of the answer. After going through a series of problems and seeing
the written estimates, place the problems on the screen again and ask
students to use the calculator to find the exact ans  er. Then discuss ways
to enhance estimation skills. (Alse see “Comput..tional Estimation Is a
Basic Skill” which appears eart or in this book, for other Suggestions.)

Many books with calculator games are available. One of the cldest
games, and a favorite with students, involves crossword puzzles using
equations with correct answers that when turned upside down form words
from the inverted numbers. For example: numbers converting to letters are
l1=i3=¢d=h5=56=g7=18=0>b,and0 =0 Toform
the words “shell oil,” the equation would need to have the answer
71077345 when solved. The task of designing equations with upside-down
answers that must also fit into crossword puzzles is a fascinating challenge
to students.
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All the ideas just suggested have assumed the availability of a basic
four-funchion calculator “The selection of an appropriate calculator fe.
a classroom deper s on the applications planned for students The
authors have found the use of a four-function liquid crystal display
aevice with a 2,000-hour battery life to be entirely satisfactory for most '
classroom uses K-12. Somwe higher-level mathenatics classes need trigo-
nometnic functions and niemories, but for mosi upplications these fea-
tures are not essential. The primnary cantion is 2o purchase calculators
wath a 2,000-hour battery life {or longer) using AA balteries They may
cost more initially, but less expenive machines with a shorter battery
hfe will cost muca more over time with the added inconvenience of
having to change batteries frequently

* amerous models of programnable calculators are now on the
mark.t. For mathematics—as well as science, sociat studies, business—
these machines have value. Somdiimes called “smart calculators or
dumb microoampaters,” they can perform complex statistical 2ralyses
in a few minutes. They can solve quadratic equations, muttiple resistor
networks, or inductor/capacitor frequency and impedance problems in
seconds. They can be used 1o play games such as black jack, dice-toss,
number guessing, moon landing, stibmarine, cannonade, biorhythm
Practical uses of the programmable calculater are many and varied
Some examples are computation of niortgage payments, bank state-
ments, compound interest, and discount rates,

CONCLUSION

In cenclnsion, the following recoinmendations are based on the
authors” own classroom experience:

s Use calculators in your classroom,

s+  Continue to use manipulative devices and concrete aids to
present concepts Calculators are not a substituie for these
tools. .
Let students use caliulators to solve word problems The ob-
jective of word proble.as is problem solving and logical think-
ing, not drill in computation.
Use as much “real” data (that is, the kinds of probiems found
outside textbooks) as possible. Word problemis need not be
limited to those in textbooks.
Teach mathematics, not calcuiator technique, Caleula*ors are
s0 common that special lessons on their use should not be
necessary. A few instructions will suffice. Remember that cal-
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culators are simply a tool, a means to an end.

Try some of the activities suggested in this article with your
classes.

Develop your own activities for problem solving using calcula-
tors.
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NINE

Computers in School Mathematics
1 D. Gawronski

“

Computers and computcr applications are everywhere these days
—in schools, classrooms, fast food franchises, offices, banks, and on and
on. The microprocessos technology has led to computer-monitored mi-
crowave ovens, home security systems. television recc ding systems; it
is relied on to report sports events and election returns. Neither child
nor adult can avoia the influence of the computer in today’s world.

The tacknological age has introduced computer-related “hard-
ware,” “high” technology, and “software” into our lives and into our
language. The casy access to high technology has come about because
of dramatically declining prices for equipment, high reliability, and the
fact that now nearly everyone knows somebdne who uses a computer.
The computer is no longer & “magical,” unfamitiar tool that is used only
by rescarchers or scholars or scientists. It is a remarkably effective tool
that is finding its way into home, school, and business because it is too
useful to do, withcut. The computer helps us do our jobs and even
routine tasks more effectively and efficiently. Mcre importancly, it gives
us power never before availab'e to solve complex problems.

All of this “revolutionary” change has particular import for the
school curriculum. Computer literacy skills are basic skills that everyone
needs or will need in order to function comfortably and effectively in
the future. Knowleage of what a computer is, and of what it can and
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catitiot doy 15 parl uf the nnnimasm competenaes that all students should
be expected to attain .

Awareness of what a computer pregram 1s and of its relationship
to 2 computer is fundameatal knowledge that should be included in
school mathematics prograns. This awareness is not the same as learn
ing to program—it 1s simply an acknowledgment. a realization, an ur-
Jderstanding that itis the program. the software, that directs a computer
in what it does. Crange the program and the womputers operation
changes. Different peaple using the same computer program will obtain
the same results, but one individual using different programs will oktain
A diffcrent result for each program. This understanding is prerequisite
to awquinng wmputer programming ability, and it is most certainly a
computer literacy objective for all students.

In addition, the knowledge of how to access, store, retrieve, and use
information in a computer environment becomes critical. These infor-
mation processing skills musi also be included in the basic school pro-
gram for all students. "ncreasii-gly. more job and career opportunities are
dependent on computer literacy and information-processing skills.

Professtonal associations of mathematics teackers nave responded
to the percewved need for computer literacy. The National Council of
Teachers of Mathematics, in its .Agenda for Aion. Recommendations for School
Mathematics of the 1980 5. stated explicitly hat "mathematics programs
must take full advantage of the power of calculators and computers at
all grade levels.” Although many individuals and groups strongly advo
cate computer literacy. there is no clear consensus or the specific skills
acomputer-literate person should possess. Because of a lack of consen-
sus at this early stage, mathematics teachers have often defined opera-
tionally in their course design their meaning of computer literacy. As a
result, cerain themes are becoming common and widely accepted.
These themes include the following:

1. What a computer ¢an and cannot do
2. What a program can and cannot do
3, How to progrant

Students need to learn to evaluate the advantages and disadvan-
tages of nsing udmputers to petform particular tasks or to make selective
application. Not all problems are best solved by a computes. But stu-
dents can appreciat’ .hat many problems, such as extensive data analy-
sis, simulations, analysis of alternative models, can be solved more
eife tively, more quikly, and in some cases exclusively, by the consid-
erable power of & coinputer program.




Tao leam wlat o computer can and cannot do requires some hands-
on experience. And the appreaation of computer functions and limita-
tions includes o knowledge of computer uses in everyday life

Computer literacy also includes knowing what a “progrom” is and
what it 1s capable of accomplishing. Computers must oe given direc-

us may seem obvious, but there is widespread misunderstand -

s fact among the general publicC When students use, test, and

evaluate prograts, they le.rn how the set of directions called the “pro-

gram” determinep the way i which the computer solves a problem or

plays a game. Ygung people are especially attracted to computer games,

and when they adk such questions as “"Why does it work that way?”’ or

“How does the computer know what to do?” they are on the way to

understanding what a program does. Often their desire to make the

program do something differently leads to experimentation which aids
them in acquiring prograinming skills.

Finally, & comnputer-literate person shoulu know how to write an
onginal program. The computer con enhance problem solving. but pro-
gramnung itself 1equires problem-solving ability and acumen Program-
nung can alse be an aid to an understanding of a mathematical concept
or an algorithmic techimigue

The peivasivencss of compulers raises ‘ancial questions about 1he
mathematies curniculam How, whien, and whal to add to the curricu-
luin, as well as whar 1o remove from the curriculum, become cignificant
issnes that must be addressed if students are to be prepared for this
technological age.

Mathematics teachers have begun to confront these concerns since
i many school systeins they were the firsl to introduce computers in
the classroom. In the 60's and early 70°s these efforts were relatively
meager bewuse of the high ost of both computer hardware and tele-
phone lines to support time-sharing systems Recently, howewrir, the
nicroprocessor has miade low-cost computer powar available and
within the reach of many individual schools and districts Thus, the
potential for curncnlum change is inc.eased for two reasons First, the
low cost of the microcomputer makes it atiractive to both school pro-
gram directors and to individual consumers Second, the more comput-
ers are bought for personal or business use, the more the public will
expect the schools to be teaching about computers and their uses Thus,
the low cost of equipment which permits easy access, dnd changing
cultural expectations become forces moving the school mathematics
program toward inclusion of computer literacy and information-
processing Jills

Since schools must take an actis e role in preparirg students to live,




PAFullToxt Provided by ERIC

work, and play s world saarety in wlich coniputers are performing
more and more functions, there must be o profound rethinking of what
is basic now and what will be basic in the future, For many years,
facility with computational skills and algorithms has been considered an
essential, basi, minimum skill, But is this still the case? The importance
of addition, subtraction, multipluation, and division skills should not
of course be underestimated. These skills, however, are only the tools
and technugues that lielp us solve problems. The knowledge of when to
use or apply these tools is the crucial skill. Once we know that addition
or multiplication can solve a problem, the calculator and,’or computer
can assist and carry out the computation,

Consider the present role of the square root algerithm. The concept
of sguare (oot is certanly an important and vseful one. However, the
critically important knowledge iy knowing when it 1s necessary to calcu-
late a $quare root to solve a problem. Once this decision is made, the
problem sobver reaches for a calculator or includes a statemient in a
waniputer to determine the sgquare root. A few years ago the problem
solver wuuld hayve reached for a table of square roots or a slide rule. For
nany years now, probleni solvers who use the square root algorithm to
calculate a square roor have been rare,

* With the widespread use of calculators and computers, it is no
longer necessary tu develop the skill of completing long and compli-
cated calculations quickly apcd correctly Rather, the skill of estimation,
the ability to recognize the reasonableness of a result, becomes basic. For
example, the cash register keyboards in some fast food franchises con-
tam pictwmies of the food rather than numbers to indicate dollars and
cents When acustomer purchases a hamburger, french fries, and a malt,
the dlerk hits the keys with the pictures of these items, and then the
register displays the total price. This 1s not science fiction—this is today.
It is probably more time-efficient to hit one key with a picture of a
hamburge; than to hit two or three keys to indicate price, When prices
or menus unge, extensive staff retraining to learn new, prices or to
matcl, prices to new items 1s not necessary. A few simple programmning
changes in the computer ¢can inake the changes quickly.

Buat what skill do both the customer and the clerk in this scenario
need? They need to be able to estimate the ansv-er to recognice that the
total amaunt shewn is reasonable, If the total indicates $.7 7, the clerk
should ¢ ertainly beyuick to recognize a mistake in the customer’s favor.
And if the total indicates $17.00, the customer should recognize a mis.
take in the store’s favor. In sudh a work situation, the clerk is no longer

expedted to add and subtradt quickly and acwurately to determine totals

and change Once the derk enters the information, the computer-driven




cash register completes these calculations. Tne clerk as well as the cus-
tomer. however, should be able to judge or estimate if the result shown
is a reasonable une,

The computer should serve to extend, to augment. to facilitate
curnculum development and corriculum change School mathematics
programs must not be contined to extensive and repetitive practice of
what wll become archaic computational skills The focus should be on
acquisihon of concepts of addition, subtraction, multiplication. and di-
vision, with multiple opportunities to apply these concepts The ability
to add columns of four-digit numbers is not a highly prized skill in
today’s real world. Nearly everyone who performs such tasks uses a
calculator or & computer program to perform them. The nore highly
prized skill is knowing when 1o add to solve the particular problem under
study.

What does this shift mean for the school mathematics program? It
mieans that the focus can move from practicing the “tool” to learning
hew, when, where, and why to use the “tool.” Relevant skills become
{1} an understanding of the operation or concept, (2) an ability to recog-
nize when to apply the operation appropriately, (3) an ability to use a
calculator or computer appropriately. The computer can do the rote,
tedioos part of “crunching the numbers,” and the teacher and the stu-
dent are free to explore, apply, use, and practice mathematical skills in
meaningful-ways.

trraddition- to sueh -curriculurs content. shift_or change, informa-
tion-processing and computer-literacy objectives and activities should

. ——.becomne prominent in the K-12 program.

There is a need For Better educational software and for more pro-
grams that not only enhance problem solving but take full advantage
of the unique capabilities of the computer—capabilities unavailable in
other instructional medfa. Byt existing software can serve as an intro-
duction, Many students have learned to program by working with a
“canned” program and by experimenting with changes to make it do
something else. Su, ;. changes of existing programs <ai [ead” to-astued
of what program statements do and eventually to the development of
an original program. This strategy is similar to the way in which a child
learns to speak the native language. The native language is an existing
structure which surrounds the child in his or her environment The child
lea. ns to imitate in the language. to explore it, to create original phrases.
and cventually to put the language together in an individual style In
similar ways, the student can create original programs by exploring and
modifying previously created software. '

Becaose of societal demands and the rapid development of new

o
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computer technology, many of these curnicular Changes have begun.
The burden for systematic change, however, rests with schools and
mathematics teachers Some of the groups that mast work together to
Lring about a responsive school program indude professional teacher
organizations, curriculum Jesvelopers, communmity gioups, and school
administrators The exponential growth in computer capability and ac-
cess makes such change a critical test of effective schooling.

In summary, the imp.act of computers or, school mathematics pro-
grams is heginning to be felt, and this impact will increase dramatically,
The ause of computers in the classroom affects the curpiculum in at least
three ways: '

1 The mathematics curriculum is expanded to indude new goals

—ind objectives such as computer literacy and information-
. processing skills,

2 Traditional mathematics teaching approaches such as “show and
drill,” repetitive gracllcc on long computational al;,ur:thms are
:mmmucd

3 Mathermatics objectives in estimation and problem solving re-

ceive increased priority, and learning activities related to devel-
oping these abilitics receive increased attention and time.

A ——

__Throughout the 30'< these three effects are certain. to continue and to.. . .

increase in m.q,mludc Consequently, they will be among the malor
detéiminanis of thc future school mathematics curficulum,
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Wosiens and Mathematics: Is There a Problem?
Mary Schatz Koehler and Elizabeth Fennema

In the past decade, there has been a great deal of concern as well
as much research and scholarly writing at all levels about sex-related
_differences in mathematics. Is there reatly a problem? Are females being
~short-changed i mathematics education? Does.jt make any difference
if females do not fearn mathematics? In order to get a clearer focus on-
the future and to determine what should be done, fet us review the past
status of women and mathematics, and also consider the current situa-
tion.

P ——_

———— it - -

PAST STATUS

As the lack of prominent female mathematicians in the course of
history indicates, women have faced some hard times in mathematics.
In carlier centuries it was thought that “women were unsuited for the
study of this subject-{mathematics} _because their heads were smaller
_than men’s, their nervous systems too delicate, or iReir intellectual —— -~
" capabilities not sufficient to the task” (4, p. 262). Gauss., an eminent
German mathematician of the eighteenth century. stated that “when a
persen of the sex, which, according to our customs and prejudices, must




encounter infinitely more difficuitics than men o familiarize herself

with these thorny researches, succeeds nonetheless in surmounting

these obstacles and penetrating the most obscure parts of them, then

withusut doubt, she must have lhe noblest courage. quite extraordinary
~talents, and a superior genius.”

Linfortunately, such views are not limited to previous centuries.
Only a decade ago. Aiken said “sex differences in mathematical abilities
are, of course, present at the kindergarten level and undoubtedly ear-
lier"” (1, p 203). And, although well refuted, the statement “we favor
the hypothesis that sex differences in achievement in and attitude to-
ward mathematics result from superior male mathematical ability” was
made in 1980 (3, p. 1264).

Undoubtedly, we are all familiar with the grim statistics showing
how few women throughout history have participated in science or
mathematics-related careers For example, in the 50°s women earned
only 67 percent of all science and engineering doctorates awarded and
.in the 60's only 7 9 percent of these degrees. The 70's saw ‘an increase
to 14 9 percent, which is still far below women's ‘represéniation in the
population (20).

Sells (19) has called mathematics the critical filter into many college
inajors and careers In looking at the mathematics course background of
students admitted to the University of California. Berkeley, in 1972, she
found that 57 percent of the men and only 8 percent of the women had
sufficient high school mathematics to qualify for calculus. Since manyly

" college majors require the calculus sequence, students w'-o enter college
underprepared to take calculus are severely limiting their options.

Women have also been underrepresented in many fields requiring
a vocalional or technical school diploma. For example, in 1978 only .2
percent of all electricians were women (8). Mathematics serves as a
critical filter into m‘any of these fields as well. Here are just a few which

- —githver Tequire or recommend more thar high school algebraianimal—_
— techrician, graphic artist, dental hygienist, occupational.or physical
therapist, chemical techrnician, communications worker, land surveyor.
and mechanical draftsperson (12, pp. 78-79).

CURRENT SITUATION

We have just seen that attitudes toward women and mathematics
have been substantially less than favorable, and that women have been
severely underrepresented in nany careers involving mathematics We




will now assess the present-day situation, by considering three compo-
nents: mathematics achievement cata. high school course enrollment
- data, and career data.

4
T Achievement Data - - ]

I an exlensive Teview of Tosearch Fennemafound—that-there-are— -
no congistent significant differences in the learning of mathematics by
boys and girls ine the early clementary years” {9, p. 128). Research
involving older students led to the conclusion that “in overall perform-
ance on tests measuring mathematics learning, there are no significant
differences that consistently appear between the learning of boys and girls
in the fourth to ninth grade. There appears o be a trend, however, that
if a difference does exist, girls tend to perform better in tests of mathe-
matics computation and boys tend to perform better in 4ests of mathe-
matical reasoning” (p. 135). Partly because of the paucity of data, and
partly because of confounding factors, no conclusions could be reached -
about sex diffgrences in high school mathematics.

The mathematics assessment of the second National Assessment of
Educational Progress (NAEP 11) provides more recent information, In
1978 this study assessed the learning of a random sample of 70,000 ¢-,
13-, and 17-year-olds jn five content areas (number and numeration,
variables and relations, geometry, measurement, and other topics) at
four cognitive levels (knowledge, skill, understanding, and application).
In reviewing the results, Fennema and Carpenter conclude that “the
assessment results indicate that on a nationwide basis, there is little
difference between males and females in overall mathem.tics achieve-
ment at ages 9 and 13. Al age 17, however, females are not achieving
at the same level in mathematics as are males. Even when females and
males reported they had been enrolled in the same mathematics courses,

——Jales! performance was higher than that of females, and the differences
were sreatest on the more complex tasks” (13, p. 6).

Another source of current information on mathematics achieve-

ment is the data from the mathematics portion of the Scholastic Apti-~ \

tude Test (SAT). This test is taken by approximately one million high
school seniors annually, students who represent about one-third of all

- *high school seniors and about two-thirds of all seniors who go directly |
to college. The data that follow, then, are not meant to represent all high
school seniors, but rather a self-selected sample, who, although they |
represent a wide range of abilities are "'more apt in comparison to all \
high school seniors” {7, p. 4).
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Table 1 gives the data from the mathematics portion of the SAT for
the last eight years. Each year males in this group outperformed females.
Although the scores for both males and females have decreased, the
difference between female and male scores has widened over the years.

R

.=

TABLE 1
SAT—MaTtuemanics Mean Scorss, 1972-1979
Male Female Difference
1972 505 461 14
1973 502 460 42
1974 501 459 42
1975 495 449 46
1976 497 446 5
1977 497 445 52
1978 494 444 50
1979 493 443 50

Soutce College Entrance bxamunation Board College-Bound Sentors. Nabomal Report, *971-
1¢7¢ (Princeton, N | Eduacational Testing Service, 1979.}

After examining this achievement data, one could reasonably con-
clude that while differences in favor of males are not manifest before
high school, in the later high school years differences in favor of males
do appear. This is not to say that all males perform better than all
females on all measures of mathematics achievement, but simply that
males as a group tend to outperform females as a group jn the later high
school years, on some measures of mathematics achievement,.

Enrollment Data

We have mentioned previously that mathematics is a critical filter
to many careers, and to undergraduate and technical school majors.
Enrolling in high school mathematics courses is one way for students
to keep thejr options open. Let us now consider the questiun of whether
there are differences in the pattern of enrolhinent between males and
females, NAEP 1l and the SAT serve as sources of enrollment data,

Table 2 gives the percentage of 17-year-old students in the NAEP
Il testing who reported that they had been enrolled for at least one
half-year jn a particular mathematics course. This table shows that in
the beginning high school courses there is very little difference in the
course-taking patterns of males and females. However, a significantly

7




TABLE 2
MathEpATICS COURSE BacCKGROUND

PERCENTAGE OF 17-YEAR-OLps Having

Course Taken ar Least 1/2 Year
Females Males

General or Business Math 47 44
Pre-Algebra 45 46
Algebra 1 74 71
Geometry 51 52
Algebra Il 36 38
Trigonometry 11 15
Pre-Calculus/Calculus 3 5

Source; Fennema, E., and Carpenter, T. “Sex-Related Differences in Mathematics Results
from National Assessment.” Muthomatws Teacher. in press.

higher percentage of males than females were enrolled in the more

advanced ciasses of trigonometry and pre-calculus/calcuius (13}, It -

should be kept in mind that mc "t subjects in this sample were eleventh
grade students. The differences may have been greater if twelfth grade
students had been assessed.

Although representing a self-selected sample, data gathered from
those students taking the SAT give more course-enrollment informa-
tion. Table 3 shows that higher percentages of females than males have

TABLE 3
YEars oF MATHEMATICS Stupy AS REroRTED BY SAT PARTICIPANTS

2 years 3 years 4 years 54 years

M F M F M F M F

71-72 119 19 29 10 50 33 9 4
72-73 10 20 28 40 51 33 9 4
73-74 11 21 29 40 50 33 9 4
74-75 10 20 28 39 50 k2! 9 4
75-76 10 20 27 37 51 35 10 5
76-77 10 19 26 36 50 35 11 5
77-78 10 18 25 35 51 37 12 6
78-79 a 17 24 34 53 39 12 é

Source: Coliege Entrance Bxamination Board. College-Bound Seriors  Nafional Revert, 1971~
1972, (Princeton, NUJ.. Educational Tesling Service, 1979.)

JAll numbers reported are percentages
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taken only two or three years of high schoo. mathematics, while higher
percentages of males than females have taken four or five years of
mathematics (A high school student is considered to have taken five
years of mathematics when she/he has taken a college-level course such
as caleulus } In fact, for the past eight years, over 50 percent of the males
who took the SAT reported that they had taken four years of mathe-
matics in high school. For this same period, the percentage of females
taking four years of mathematics has increased at a morerapid pace than
the percentage of males, but female enroflment still lags behind that of
males.

It is evident then, that females are not enrolling in advanced high
school mathematics courses in the same proportion as males. This lack
of participation in high school mathematics can eventually lead to fe-
male underrepresentation in many careers. As Fennema points out, “Al-
though only symptomatic of the effects of many variables, electing not
to study mathematics in high school beyond minimal or college require-
ments is the cause of many females’ nonparticipation in mathematics-
related occupations” (10, p. 7). We will now look at some career data
to see where females are employed.

Caraer Data

Not only are fernales, to a large extent, still employed in tradition-
ally female fields, but female students are still making traditional career
choices. For example, some professions with fewer than 10 percent
female members are engineering. law, medicine, and dentistry. On the
other hand, females comprise 98 percent of dental assistants and secre-
taries (8). N

Students taking the SAT provide us with information regarding
their intended career areas. In 1979, choices that were predominantly
male (greater than 70 percent) were military science, engineering, ar-
chitecture, geography. physical science, and forestry. In the same year,
choices that were predominantly female (greater than 70 percent) were
home economics, library science, foreign languages, psychology, edu-
cation. art, theater arts, English/literature, and health and medicine
(7).

Thus it is evident that women are still not found in many techno-
logical and scientific careers, nor are they planning to enter these fields,
Since many of these careers are financially rewarding, women are being
short-changed by not being encouraged to enter them. However, the
nation as & whole is also being short-changed by not receiving the
contributions of many talented women.
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Notwithstanding the progress tnat has been made, then, we sce that
sex-related differences in mathematics achievement, enrollmen-, and
career choice still exist. Females are still receiving a poorer mathen.atics
education than are males.

VARIABLES RELATED TO MATHEMATICS EDUCATION
INEQUITIES

There are, of course, many variables that can influence an individ-
ual’s mathematics learning. Some have been shown to have more impact
than others. We will consider three categories of variables: attitudes,
influences of significant others, and influences of schools.

Attitudes

Although attitudes are not developed independently of achieve-
ment, they are highly related to the learning of mathematics. Three
specific attitudes help us understand why sex-related differences in
mathematics exist: (1} confidence in one’s ability to learn and perform
well in mathematics, (2) perceived usefulness of mathematics, and
(3) perception of mathematics as a male domain.

Confidence.  Confidence, or the belief that one can do well in math-
ematics, is positively correlated with mathematics achievement. In fact,
it is almost as highly correlated as are the intellectual variables of spatial
visualization and verbal skills. Girls report less confidence than boysin
their ability to do mathematics even when they are in fact achieving as
well as boys. This lowered confidence is evident as early as sixth grade
and perhaps earlier (15). The importance of confidence to one’s learning
of mathematics can be summed up by saying that “this finding of less
confidence by females influences how hard they study, how much they
learn, and their willingness to elect mathematics courses” (11, p. 9).

An examination of the reasons females give for the causes of their
successes or failures shows one way that they demonstrate their lack of
confidence. Females, more than males, attribute their successes to luck
or to some environmental influence, while males, more than females,
attribute their successes to their own ability. Males tend to believe that
they are in control of the situation. Because of this control. they expect
repeated success. Females perceive that the reason they succeed is not
within their control, and consequently tend to believe that success will
not repeat itself, The trend reverses in discussions of failure. Females
tend to blame failure more on their own lack of ability, while males
blame failure more on luck or on the environment. Since females often
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do nol believe in their own ability, they tend to expect Failure and often
have little or no confidence in their ability to perform well in the future.

Percetved Usefulness of Mathematic.  Whether or not a student believes
mathematics will be of personal value is another attitude crucial to the
learning of mathematics. Students who perceive mathematics as useful
in either educational or career plans will be motivated to put more time
and efforl into studying, and to elect more mathematics courses. On the
other hand, students who do not perceive it as relevant to their goals
will not be likely to invest the time and erergy necessary to obtain a
solid understanding of mathematics.

Starting in juntor high school, males perceive mathematics as useful
to them to a much greater degree than do females. Males, much more
than females, would tend to agree with the following items from the
Fennema-Sherman Mathematics Usefulness Scale (14):*

-

. I'll need mathematics for my future work,
. I study mathematics because I know how useful it is.
. Knowing mathematics will help me earn a living.

2

3

4. Mathematics is a worthwhile and necessary subject.

5. l'il need a firm mastery of mathematics for my future work,
6

. I will use mathematics in many ways as an adult.

The fact that males tend to perceive mathematics as useful to a
greater degree than do females, helps explain why they elect more
mathematics courses than do females, and why they are consequently
more often employed in fields that use mathematics than are females.

Mathematics as a Male Domain.  Repeatedly in our society, mathe-
matics and inathematics-related work are seen as masculine. Unfortu-
nately, this perception of mathematics as 2 male domain is not some
archaic view held only by “older generation” men and women. Osen
notes that “many women in our present culture value mathematical
ignorance as if it were a social grace” (18, p. ix).

One of the most consistent findings from research on sex-related
differences in mathematics is that males, more than females, stereotype
mathematics as a male domain. For example, starting as young as sixth
grade, boys agree more than do females with sratements such as

1. It’s hard to believe a female could be a gentus jn mathematics.

*The “Fennema Sherman Mathematics Altitude Scales, JSAS Catalog of Stfected Documnis in
Puchology 6, no 111976} I {ms no 1225). are available for $5.00 fromn the American
Psychological Assoctation, 1200 17th St NW. Washinglon, DC 20035,
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2. When a woman has to solve a math problem, it is feminine to
ask a man for help.

3. I would have more faith in the answer for a math problem solved
by a man than a woman.

4. Girls who enjoy studying mathematics are a bit peculiar.
5. Mathematiics is for men; arithmetic is for women.

6. | would expect a woman mathematician to be 2 masculine type
of person. (14)

Constdering that at the junior high and high school level there are
more male than female mathernatics teachers, and realizing further that
many mathematics-related occupations are predominantly male bas-
tions, it is no¢ surprising that students view mathematics as a male
domain. Unfortunately, this stereotyping occurs at a crucial time. As
Fennema explains, it is probably “more thai just coincidence tha: at
adolescence, when girls are becoming increasingly aware of their sex
role, sex-related differences in mathematics learning appear” (11. p. 11).

Individuals do those things they see as appropriate for their sex. If
a giri perceives an activity as feminine, she will be more apt to partici-
pate in it. The same influence works on boys. If a boy perceives an
activity as appropriate for males. then he will feel more comfortable
performing it. Not only do individuals tend to select aclivities perceived
as appropriate for their sex. they fear sanctions from others if they
perform opposite sex-stereotyped activities. In relation to mathematics,
females may fear social rejection if they excel in mathematics, while
males will be pressured into doing well.

Influences of Significant Others

A second set of factors that affect sex-related differences in mathe-
matics is the influence of teachers, counselors. peers, and parents on
students.

Teachers,  Although many teachers feel helpless in influencing stu-
dents, we firmly believe that teachers are the most important influence
in students’ learning of mathematics. Students often point to a single
teacner as the cause of either their liking and electing mathematics
courses, or their disliking and avoiding them. Research based on obser-
vations of mathematics classrooms has found that teachers treat males
and females diff erently in both subtle and not-so-subtle ways. Teachers
interact more with males than they do with females. They pay more
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attention t0 high-achieving males than to high-achieving females or to
any other group. They expect boys to do better on higher-cognitive-
level tasks, and thus encourage and call on them more frequently when
the mathematics is of a higher cognitive level. They encourage boys to
behave independently and to persist in finding solutions to difficult
problems, but they encourage girls to be dependent. Teachers can influ-
ence girls. When teachers hold the same lugh expectations for girls as
they hold for boys, girls perform as well as boys (5).

One result of this differential teacher treatment of boys and girls
is that boys become more wwtonomous learners of mathematics than do
girls. That is, boys become “thinkers who are independent problem
solvers and who do well in high-level cognitive tasks” (11, p. 13). Girls,
on the other hand, learn to be dependent and “helpless” with respect
to problem solving.

Leers.  One has only to watch adolescent girls and boys to confirm
the idea that peer influence is important. Extremely interested in their
peers” opinions, adolescents often tailor their behavior to harmonize
with their perception of their peers’ expectations. Since boys, much
more than girls, stereotype mathematics as a male domain, they no
doubt send many subtle, and not-so-subtle, messages that girls who
achieve in mathematics are somewhat less feminine.

Counselore,  During the high school years when students seek ad-
vice concerning elective courses, counselors can be very influential.
Unfortunately, counselors often uphold and reinforce the stereotype of
mathematics as a male domain, and tend to view mathematics as less
important for females. Not only do counselors fail to encourage fetmales
to elect mathematics courses, they often discourage them from electing
these courses. Counselors may not be aware that by not actively en-
couraging them to take mathematics, they are effectively closing many
educational and career options to femnales,

Parents.  In many ways, the attitudes and sterectypes that parents
hold ate passed on to their children. A student who receives parental
support and encouragement to work hard in mathematics: and who
receives parental approval and praise for excelling in mathematics, is
much more likely to persist in the subject than ene who does not. Also,
a student whose parents view mathematics as useful and who encourage
her or him to elect more advanced mathematics courses in later high
school and postsecondary years will be more likely to do so. Parents are
more likely to discuss course decisions and career plans with their sons
than with their daughters, and are more supportive of their sons’ mathe-
matical interests. They also hold lower education al aspirations for their
daughters than for their sons (16).




More so than fathers. mothers often have inadequate mathematics
backgrounds and hold negative attitudes toward mathematics. Since
daughters often look to the mother as a role model, the mother’s feelings
about mathematics can be critical. A mother who lacks mathematics
skills is likely to accept hei daughter’s poor mathematics grades as
inevitable. As one seventh grader told the authors, when explaining a
girl’s negative attitude toward mathematics, "“She has it because her
mother pretty much has it and . . . it’s just been sort of passed down.
She just has caught it from her mother.”

Overall School Influences

The influences of significant others, especially those of teachers and
counselors, should not be read as “afl teachers do such-and-such” or
“aff counselors behave thus-and-so.” There are as many individual dif-
ferences ambng teachers and counselors as there are among females and
males. Many schools do have high percentages of remales not only
enrolied in advanced mathematics, but also performing well in such
courses (6). In these schools, the teachers are a powerful influence in
persuading the females ¢2 enroll in higher-level mathematics courses.
The teachers assumed the roles of “trusted older friend. respected men-
tor in their field of interest, and that of informed and aggressive coun-

selor” {6, p. 156).

WHAT CAN BE DONE?

S0 far, we have presented a problem {that of sex-related differences
in achievement and enrollment in mathematics) and we have discussed
some factors influencing or causing that problem. Now, however, we
need to look at how to go about implementing a solution to that prob-
lem. We have several suggestions. and we have focused them on teach-
ers and on schools,

Teachers

Teachers need to be more aware of their impact on students. They
need to become sex-blind with respect to their teaching of mathematics
—that is, they need to treat males and females the same. They need to
encourage both males and females to keep their educational and career
options open by electing more mathematics classes. They need to help
all students develop feelings of confidence about their ability to do
mathematics. Teachers should not attempt to bolster confidence by
lowering their expectations. They should hold high expectations for
both males and females. Teachers should continue to monitor the text-




“books and media aids used to be sure that they do not perpetuate the
stereotype or myth that mathematics is a male domain.

To further these ends, teachers can ask themselves several ques- -

. tions such as the following:

1. Are there sex-related differences in mathematics learning in my
classroom? Are boys more apt to be better problem solvers than
are girls?

2. What are my students’ attitudes toward mathematics? Do the
girls feel diff erently about themselves as learners of mathemat-
ics?

3. Do 1 treat girls and boys differently in my classroom? Do 1 call
on boys more than 1 call on girls?

4. Do 1 have different expectations in mathematics for girls and
boys? How do my expectations affect niy interactions with giils
and boys?

5. Do | give information to both boys and girls about the useful-
ness of mathematics?

6. Do I use any instructional rnaterials that are sexist?

Schools

Schools, too, can do much to help alleviate the problem of women
and mathematics. Most importantly, they can reach four important
groups—teachers, counselors, parents, and students—and disseminate
information to them regarding the usefulness of mathematics. The fact
that mathematics opens the door to countless 2ducational and career
opportunities cannot be stated ofter. enough. Even though most colleges
require only one or two years of high school mathematics for admission,
most mathematics majors require three or four years of high school
mathematics. For the non-college-bound student, mathematics is also
important. Our world is becoming exceedingly technological and scien-
tifically compiex; therefore an understanding of mathematics is simply
a basic survival skill.

Schools also need to guide these four groups in working to elimi-
nate the stereotype of mathematics as a male demain. Boys and girls
need to be shown that both sexes are quite capable of, and should strive
for, excellence in mathematics.

Schools, too, can ask themselves a series of questions.

1. Are there sex-related differences in enrollment patterns when
mathematics is elective? If so, what should be done about them?
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Are gifted females, as well as gifted males, given extra support
and encouragement in mathematics?

3. Are females, as well as males, specifically encouraged to actively
participate in mathematics-related activities such as computer
clubs?

4, Are counselors consistently informed about the importance of
mathematics for both girls and boys?

5. What is this school actively doing to inform parents about the
usefulness of mathematics for girls and boys?

There are several intervention programs that schools can imple-
ment to more forcefully combat the problem of women and mathemat-
ics. One such program is “Multiplying Options and Subtracting Bias,”*
a series of four videotapes and workshops specifically designed for
teachers, counselors, parents, and students. It provides accurate infor-
mation about women and mathematics and addresses such topics as the
usefulness of mathematics, the stereotyping of mathematics as a male
domain, confidence in learning mathematics, and differential treatment
of males and females as learners of mathematics.

Teachers and schools may well come up with solutions suited to
their own situation. It is critical, however, that all groups recognize and
work on the problem of ineguitable mathematics education for females.
All should join the National Council of Teachers of Mathematics in
their commitment “to the principle that girls and women should be full
participants in all aspects of mathematics education. Both simple justice
and future economic productivity require that we do so without further
delay” {17}
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ELEVEN

The Case for a New High School
Mathematics Curriculum
Shirky Hill

The weary mathematics teacher of long experience may be par-
doned a reaction such as “Here we go again. It must be time for another
push to change high school mathematics.” In retrospect, it does seem
that periodically the public becomes acutely conscious of the reliance
of our civilization upon technology and the dependence of technological
development on a solid foundation in mathematics and science. This
consciousness is just one obvious step removed from & concern for the
quality of mathematics and science education as the bedrock of that
foundation.

In 1957, when the Soviet Union launched Sputnik into space, there
was an immediate hue and cry. The result was a considerable effort,
with both public and private funding, to ensure the competitive posi-
tion of the United States in technology by curriculum reform and
teacher education in science and mathematics. Twenty years later a Time
magazine feature article concluded that “twenty years after Sputnik”
we had been successful. The evidence for this conclusion was the tech-
nological dominance of the United States.

In the meantime, the public’s educational priorities had sisifted
dramatically. By the mid-seventies the concern was for jssues of eq-
uity, for assuring that everyone achieved some minimal skill level.
The largely unexamined assumptions of the back-to-basics movement
proved attractive to much of the public and to many teachers.
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THE REIGN OF THE TEST SCORE

The same period was the era of a remarkably unquestioned faith
in test scores. For many people. including too many school a’ministra-
tors, successful education has become synonymous with high ‘est
scores. This has happened despite the fact tha! many who are critical
of teachers and schools and school districts because of their students’
performance on standardized tests do not know what those tests are
testing or whether they even match the schools’ stated objectives. This
is supreme faith in the testing industry to interpret our educational priori-
ties. In a time of rapidly changing needs it is a dangerous faith, because
tests are a very conservative element in the curriculum dynamic.

Declines in test scores have been much publicized. Anyone paying
attention knows of a decade-and-a-half decline in scores on the Scho-
lastic Aptitude Test. It does not matter that the Educational Testing
Service has tried to make clear tha” the SAT has a sole and narrow
purpose, the prediction of performance in the first college year, and that
it is not designed to provide evidence for evaluation of school. programs.. .
These technicalities escape the attention of the public and the media as
references are made ag:in and again *o0 the SAT results as evidence of
a failure of the nation’s scheols.

In 1977, an Advisory Panel on the SAT Score Decline conducted
an exhaustive study of possible causes and reported in On Further Exam-
ination (1) that the causal Factors fall into two quite different cate-
gories:

1. Changes in the SAT-taking population—a broadening that ac-

counted for from two-thirds to three-fourths of the decline
between 1933 and 1970, and one-quarter since 1970,

2. Changes in the practices of schools and .ne American social
fabric (for example, more elective courses and fewer required
courses, automatic promotions, grade inflation, absenteeism, -e-
duction of homework, lowering of standards. lowering of col-
legte entrance standards, television, disintegration of family sup-
port, disruption in the life of the country, diminution of
motivation for learning).

In short, there is a complex web of causes—both school and nonschool.

A NATIONAL CRISIS

Test scores alone have not generated the recent consensus of crisis
in mathematics and science preparation. As with Sputnik, these alarms
are related to perceptions of national nceds and policy. The nation has
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serious concerns about its present and future ability to increase produc-
tivity, to fill trained personnel needs in industry and the military, and
to maintain technological competitiveness. Many people recognize the
critical role of mathematical skill and knowledge as a base for the
technical training most of these needs demand.

The doutts have been aggravated of late by reports of the depth
and extent of the mathematics and science components of the school
programs in the Soviet Jnion, Japan, and West Germany. Concerns
reached the highest levels of government and in 1980, President Carter
requested an analysis by the National Science Foundation and the De-
partmen? of Education. This analysis and the recommendations it gener-
ated are contained in the report, Srience and Engineering Education for the
1980 and Beyond (5).

In an appendix, the report directly considers our compemwe posi-
tion:

This concern centers on the important question of whether the

Unit~d States faces a reduced ability, relative to other countries, to

generate and incorporate technological change in its production and

utilization of goods and services.

And noting anxiety, particularly about engineering and computer
professions, it states:

While the United States has current shortages and future shortfalls
in these areas, the Soviet Union, Germany, »ad Japan are producing
much larger proportions of engineers and applied scientists than we
are. At the same time, these countries are educating a substantial
majority of their secondary school population to a point of consid-
erable scientific and mathematical literacy, in part because they
apparently believe that such literacy is important to their relative
intemational positions.

Further, the report leaves little doubt that its writers see a link between
the fact that half our students opt out of mathematics and science study
early in high school and these increasing shortages in the nation’s pool
of technically and technologically trained personnel.

WHAT ELSE IS NEW?

Let us return to our skeptical mathematics teacher who, having
been around awhile, is thinking, “This counds all too familiar. We've
heard about crises before. Is it really any different now?” The fable
about the boy who cried “"Wolf!” comes at once to mind, but with the
recollection that in the fable the wolf finally did come.
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What is new, what is different now that lends particular urgency
to a need to reexamine the high school mathematics program? There are,
| believe, some new elements. as well as the acceleration of the pace of
change Mathematics and its applications have always had a mutually
vitalizing relationship. The uses of mathematics have increased and
mathematical models have found uses in areas never before touched by
mathematical methods. Mather-atical methods are pervasive and, in
fact, have become our civilizatio. s major problem-solving tool.

At the same time, mathematics itself has expanded its boundaries
and changed some of its methods in profound ways. The term now used
—"the mathematical sciences’—not just “mathematics”—conveys the
importance not only of the discipline itself but of the delivery of its
knowledge and techniques to the solution of a wider variety of prob-
lems.

Because of the pervasiveness of mathematics, the ordinary citizen,
as well as the career user, needs a higher level of mathematical literacy
to function effectively in an increasingly technological world.

The traditional program reflects an age when arithmetic skill and
a little algebra (geometry was fine to “‘teach one to reason’) were
enough for most people; anything more was for engineers, scientists, or
mathematicians. 1 am not certain that such beliefs were ever valid, but
if they were, they certainly are valid no longer.

The NSF-Department of Education report puts it clearly:

The contribution of science and technology to our security and
prosperity rests on two bases. The first of these is the competence
and inventiveness of the practitioners, the scientists, and engineers
who design and build the sy.tem. But the second base ig equally
important to our overall success as a Nation. This second base
consists of the overwhelming portion of our population which has
no direct involvernent in science and technology, or with the sci-
ence and engineering community. They are indirectly involved
through their influence on the governmental and industrial sources
of fu: ding for scientific and technological endeavors. They are
involved in the regulatory and policy decisions that set directions
for scientific inquiry and technological development. They reap the
benefits of science and technology. Many need some knowledge of
science and technology to do their jobs well. However, the current
trend towadrd virtual scientific and technological illiteracy. unless
reversed, means that important national decisions involving science
and technology will be made increasingly on the basis of ignorance
and misunderstanding. (5)
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But the new element that promises change that can truly be called
“revolutionary” is the computer and its growing availability. Education
at all levels must respond immediately and forcefully to the computer
and its role. At present. educational programs are not nearly keeping
pace with the needs engendered by computer technology and usage.

SOME RECOMMENDATIONS

In 1978, the Mathematical Association of America organized a con-
ference on Prospects in Mathematics Education in the 1980's (PRIME-~
80). The conference culminated in agreement on a number of recom-
meadations (2}. Some relate directly to high school mathematics, some
relate to collegiate mathematics but have implications for high school
preparatory programs. Among the latter are the following:

The MAA showld undertake to describe and make recommendations on an
allernative o the traditional algebra-caleulus sequence as the starting point for
college mathematics.

Many students will take only a few mathematics courses in
college and will benefit most from courses at the freshman-
sophomore leve] that include ideas: methods, and applications from
statistics, probability, computing science, and applications to real -
world situations through model-building methods.

Every college graduate should have some minimal knowledge of the mathe-
mafical sciences.

Nowadays people constantly encounter arguments based on
numerical data, assertions stated in terms of probability, and situa-
ticns that involve applications and uses of computing machines and
algorithms.

Nouteworthy in these statements are the references to the newer mathe-
matical sciences—statistics and probability, computing. The traditional
high school curriculum is largely conditioned by the absolute centrality
of calculus in all college mathematics—a dominance orought into ques-
tion by the MAA statements.

This question suggests the need to look closely at the high school
program to see if it does or should reflect the stress on probability,
statistics, and computing. [ a singular colleze preparatory track suffi-
cient now? Perhaps the potential users in business, management, and
social sciences could benefit from a somewhat different program from
that of the future engineer, chemist, ¢r physicist.

An MAA recommendation bearing directly on the secondary cur-
riculum hints at this possibility:
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The MAA should be alert to, and inform other appropriate agencies
of, the possibility that secondary school mathematics programs
might get out of step with developing college programs aimed at

subsequent careers in computing: statistics, and other areas of ap-
plied mathematics.

WHAT SHOULD BE REQUIRED?

There is increasing evidence around the country of a belief that
present mathematics requirements (typically one year in grades 9-12)
are inadequate. In a number of states and local districts there is pressure
from boards, state agencies. and teacher groups to raise the require-
ments. !

There appears to be popular support for such change. In a Gallup
poll asking which subjects are essential for all high school students,
mathematics ranked highest {97 percent). More informative, however,
are the data from a 1979 survey by the National Council of Teachers
of Mathematics, with NSF funding. The pioject, entitled Priprifies in
School Muthematics (PRISM), surveyed a broad range of populations—
professional and lay (4).

One question asked the lay sample how many years of high school
(grades 9-12) mathematics should be required. For the college-bound
student, almost half would require four years and 83 percent at Jeast
three years. For all students: four years (15 percent), three years (25
percent), two years (47 percent), or a total of 87 percent supported at
least two years. '

Particular concern was expressed in the PRIME-80 Conference of
the MAA about high school preparation in mathematics. 1t was recog-
nized that a part of the problem is the failure of half the student
population to elect mathematics study beyond tenth grade. A recom-
mendation that ensued was “to encourage all high school students to
take at least three years of high school mathematics.”

But to “encourage” is not to “require.” Who is to do the encourag-
ing? Presumably, teachers and counselors, and perhaps parents. The
data indicate, however, that such encouragement has not been forth-
coming; nor has it been effective.

1t might be expected that the lay public would be more enthusiastic
about raising requirements than would the professionals, who correctly
foresee the enormous difficulties involved. But a realistic assessment of

these difficulties does not obviate the need of both individual and soci-
ety for a higher level of mathematical literacy. It should not be an excuse
for papering over the problem.
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A professional organization of mathematics teachers, the Nationai
Council of Teachers of Mathematics, confronted this issue head-on in
one of the recommendations in its Agenda for Action: Recommendations for
School Mathemalics of the 1980%. released in 1689 (3).
The recommendation states:
More mathematics study must be required for all students and a flexible range of
options should be designed fo accommodate the diverse needs of the shident popula-
fion.
And it specifically adds:
At least three years of mathematics should be required in grades 9 through 12,

This recommendation often leaves school personnel alternately
laughing or gasping and stammering. The immediate objections such as
“That won't be the best program for everyone or “Some students can’t
get through that level of mathematics.” proceed from an erroneous
assumption. They assume that what is meant is keeping all students
longer in the same programs, those now existing. In other words, they
imagine everyone being herded through algebra-geometry-algebra.
This might indeed be a disaster.

The NCTM recommendations have something else in mind. They
no sooner recommend three years for all students, than they issue this
caveat:

To say that most students should study more mathematics is
not to say that it should be the same mathematics forall. . . In fact,
such a recommendation Poses a tremendous challenge to curricu-
lum developers and school districts to devise a more flexible range
of options, a diversified program to meet a variety of interests,
abilities, and goals. (3}

The rationale for the general recommendation refers to at least four
different clienteles for high school mathematics. It suggests “more than
a single college-preparatory program,” building on the growing need in
the social sciences, management science, business for a foundation in
statistice and probability, mathematical models and computer science,
as well as retaining the traditional precalculus preparation.

It speaks of the expanded needs for mathematics skill among those
whose postsecondary educational experience will be in highly skilled
technical areas or in vocational skill training.

Finally, it speaks to the future citizen and consumer—regardless of
career or job:

For those whose formal education will end with high school, the
needs of citizen and consumer for increasing mathematical sophis-




tication dictate a coliection of courses based on consumer and ca-
reer needs, computer literacy, and quantitative literacy. (3}

A few other points from the NCTM recommendations deserve
study:

o Algebra should be included in the programs of all capable
students to keep their options open.

o  For many stud~.nts, algebra should be delayed until a level of
maturity and basic mathematical understanding permit their
taking full advantage of a significant algebra course. Signifi-
cant mathematics courses should be available to these ntudents
early, not just the traditional general mathematics review or
prealgebra course.

o  Consumer mathematics should develop a broader quantitative
literacy and should consist primarily of work in informal sta-
tistics.

o  All high school students should have work in compater liter-
acy, the hands-on use of computers, and the applications of
computers.

« Al students who plan to continue their study of mathematics
beyond high school or to use it extensively in technical work
or training should be enrolled jn mathematics courses through-
out their last high school year. (3}

On the urgency of the need to change things, both in mathematics
requirements and in greater diversity of course offerings, I rest my case.
I have no illusions about the difficulties—difficulties aggravated by
financial woes of schools, smaller enrollments and school closings, class
sizes, problems of student motivation, lack of public support, shortage
of teachers certified in mathematics. But the status quo is simply inde-
fensible.

What is needed are some new courses, some imaginative revamping
of existing courses, some creative and effective integration of computers
into most courses, good new textbooks and other materials, good com-
puter software. Ongoing teacher support systems, perhaps 1 the order
of the old NSF institutes and academic-year institutes, could also be
used.

The implications of the case 1 have outlined suggest some starting
points for curriculum rebuilding. For the traditional mathematics user,
the traditional college preparatory program should, for the most part,
remain as is. Changes would be the incorporation of computers and
computer methods, and a greater stress on applications and modeling,
in most courses.




Strongly recommended, however, is an alternative path fcr other
fully capable students who will also become mathematics users in areas
where the mathematics orientation is more recent. Such a program
would stress statistics and computer science rather than calculus.

in terms of national humanpower needs. there is probably no cate-
gory so vital as the potential technician—the highly skilled worker in
industry, government, and the military. The high school curriculum
builders have 1arely considered this student. He or she may pursue
postsecondary training in technical institutes or on the job in industry
or the military. As technology becomes more complex, the skills needed
by the technician require a strong mathematics background. This prepa-
ration needs special attention as well as the cooperation of teachers,
curriculuin builders, and industry to determine the best way to meet
these demands in the high school program. As a beginning, some com-
ponents of the existing curriculum, computer experience, and perhaps
a new course in technical applications could provide the basis.

For the future citizern whose career use of mathematics will be
minimal, a course in computer literacy and a course in strong consumer
applications dealing largely with informal statistics skills and knowl-
edge are recommended. For those who are capable and those who may
attend college, algebra and geometry should be added. For those few
who are not capable of completing algebra, a senior year course in
personal finance management could complete a three-year program.

Ideally. a computer literacy course with some hands-on computer
experience would be given at eighth grade. Then subsequent courses
could build on this foundation by integrating computers as tools, For
some students, a substantial computer science course could come late in
high school.

The need for a sound but very elementary course in informal statis-
tics—finding, organizing, and using information; drawing inferences
from data; conducting experiments—should be stressed. Such a course
for consumers would be beneficial to several categories of student.

Only a few new courses need to be designed. Existing courses
should always be revised and updated in any case, and computers musf
be incorporated.

The difficult part will be to cope with the logistics of planning
individual programs that truly accommodate the wide diversity of
needs, interests, and capabilities, yet provide a sound and useful back-
ground for all students. Two things should be given top priority in such
curricular design, The first is flexibility. As much as possible, students
should be able to move to a different program, to move laterally without
becoming trapped in a tracking system. Without a crystal ball, the
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precise needs of each individual cannot be predicted with confidence.

This suggests the other priority-——to keep options open as long as
possible, to keep broad career choice viable. This explains the NCTM
recommendation to include algebra if at all possible, even if the course
is deferred to later grades. Students should avoid closing doors on future
choice.

Such curriculum change is a formidable task, but it is not an impos-
sible one. The future will not wait and planning should begin now.
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